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ABSTRACT: Molecular dynamics simulations of zeolites are
commonly employed for the characterization of their framework
dynamics and response to the application of temperature and
pressure. While classical interatomic potentials are commonly used
for this task, they offer a description of the interactions in the
system with limited accuracy. Density functional theory, mean-
while, is accurate, but its high computational expense limits its
scalability for large systems or long dynamics. Recent advances in
machine learning interatomic potentials, trained on computational
data obtained at the quantum chemical level, offer a promising
alternative combining high accuracy with computational efficiency.
In this study, we developed an MLIP specifically for pure silica
zeolites, trained on data from high-temperature ab initio MD simulations across various zeolitic topologies. This MLIP was then
applied to predict structural properties, thermal expansion, and pressure response of different zeolites, demonstrating its potential for
accuracy and generalizability in simulations of topologies beyond its initial training set.

1. INTRODUCTION
Zeolites are a family of natural and artificial porous
aluminosilicates that rank among the most widely produced
crystalline nanoporous materials in the chemical industry, where
they are used, in particular, for their active role in catalysis,
adsorption, and ion exchange. Computational modeling plays a
key role in understanding their fundamental properties, linking
their physical and chemical behavior at the macroscopic scale to
their structure and dynamics at the atomic scale. With this goal,
different levels of chemical description have been used in
molecular dynamics (MD) simulations of zeolites, ranging from
classical interatomic potentials − with low accuracy but high
transferability − to first-principles or ab initio schemes based on
density functional theory (DFT), which feature high accuracy
along with high computational expense. While DFT calculations
are feasible on relatively small zeolitic systems, their high CPU
cost makes them unsuitable for applications at large time or
length scales or in high-throughput computational workflows
(for example, identifying materials with a specific property by
screening a database).

In the specific case of pure silica zeolites, i.e., SiO2
polymorphs, a large number of classical force fields have been
used in the literature, with different functional forms or
parametrizations. Combariza et al. reviewed various existing
interatomic potentials,1 and highlighted that accurate atomistic
molecular dynamics simulations account for a delicate balance of
interactions. Yet, at the same time, it is known that a detailed
description of the framework dynamics is key in the under-
standing of the macroscopic behavior of zeolites: many of their

properties arise from the interplay between the motions of the
framework with an external constraint, which can be a change in
temperature, the application of mechanical stress, or the
adsorption of guest molecules (in the gas or liquid phase).
Computational studies have shown that systematic DFT
calculations in the linear response regime under the application
of pressure,2 or in the quasi-harmonic approximation (QHA),3

allow the calculation of mechanical and thermal properties of
pure-silica zeolites. However, these approaches capture only a
fraction of the configuration space of zeolitic frameworks, and
the computational cost of the more general ab initio MD
approach limits its use.

Machine-learned potentials, or machine learning interatomic
potentials (MLIPs), have garnered significant attention in recent
years due to their ability to capture complex interatomic
interactions with high accuracy as well as their computational
efficiency. They are data-driven models, typically deriving the
energy and atomic forces of a given molecular configuration
through trained neural networks, rather than relying on a
physics-informed and parametrized analytical decomposition of
the interactions at play. They can achieve an accuracy that is
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close to the reference data that they are trained on while
retaining sufficient flexibility to describe chemically and
structurally complex environments. Over the past few years,
their use has been rapidly growing, and they have been applied to
a large and diverse number of systems, ranging from isolated
molecules to materials, and from organic bonds to inorganic
coordination.4 They have been very recently used, in particular,
to describe silica systems, such as amorphous glasses and
zeolites. In this work, we have created and published a data set of
trajectories, energies, and forces obtained from high-temper-
ature ab initio molecular dynamics on a diverse set of zeolitic
topologies (see Figure 1). Trained on this new large-scale data
set, we optimized a machine learning interatomic potential
(MLIP) for pure silica zeolites, which we then used to simulate
the structure, the thermal expansion properties, and the effects
of pressure on a selection of zeolites, both inside and outside its
original training set, in order to probe its generalizability.

2. COMPUTATIONAL METHODS
In this section, we provide the key details of the computational
procedures followed in the present work. In addition, for full
reproducibility of our work, representative input files for all types
of calculations performed are made available online at https://
github.com/fxcoudert/citable-data.
2.1. DFT Calculations. The ab initio data set used for

training the machine learning interatomic potential (MLIP) was
generated by periodic DFT calculations using the QUICK-
STEP/CP2K software.5,6 This code makes use of a hybrid basis
set formed by Gaussian functions and plane waves, where the
wave functions are described by the Gaussian basis with the
addition of an auxiliary plane wave basis to describe the density.
The strongly constrained and appropriately normed (SCAN)
meta-GGA functional7 was chosen for its good performance
across a diverse range of chemical systems and properties of
interest. In particular, it reproduces satisfactorily the structural
and elastic properties and the relative stability of different silica
polymorphs.8,9 The inner core of Si and O was described by the
Goedecker−Teter−Hutter (GTH) type of pseudopoten-

tial,10−12 with triple-ζ valence polarized Gaussian basis sets
employed for the valence electrons.

Two types of geometry optimization were performed on the
conventional unit cells of the zeolite frameworks considered in
this study. In one case, starting from the literature geometries
(IZA Structure Commission, Database of Zeolite Structures:
https://www.iza-structure.org/databases/), we obtained four
distinct distorted cells from each structure, in which the cell
parameters varied by −3%, −1.5%, 0%, and +1.5%. In the other
case, full optimization of the system was achieved by performing
an iterative optimization cycle, alternating between the
optimization of internal coordinates and the optimization of
cell parameters, until both converged. We found this approach
to be more robust in finding the lowest energy structure
compared to the simultaneous optimization of both lattice and
internal coordinates.

In all of the latter calculations, the SCF convergence threshold
was set at 10−9 Hartree, while the geometry optimization was
considered achieved when maximum atomic forces and atomic
displacement were both below 10−4 Bohr and 10−4 Hartree/
Bohr, respectively. QUICKSTEP makes use of a multigrid
system to regulate the accuracy of the calculations: four grids
with a cutoff of 900 Ry on the main grid and a relative cutoff of
100 Ry were enough to optimize most of the structures and to
perform AIMD on them. To fully optimize all the structures, a
more accurate multigrid was required, formed by five grids, a
main cutoff of 1800 Ry and a relative cutoff of 300 Ry.
2.2. Ab InitioMolecular Dynamics Simulations. In order

to generate a diverse and physically representative set of zeolite
configurations, we performed ab initio molecular dynamics
(AIMD) simulations, coupling Born−Oppenheimer dynamics
with the evaluation of the energy and atomic forces at the DFT
level. AIMD simulations were run on the four strained structures
of each of the 17 zeolite frameworks considered. QUICKSTEP/
CP2K, with the same computational setting adopted in the
relaxation of the distorted lattices, was employed. The equations
of motion were integrated with a time step of 0.5 fs.

Figure 1. Unit cells and labels of the pure silica zeolite frameworks considered in this work. Green and blue labels are adopted, respectively, for the
frameworks used for the training of the potential and for an external validation of the potential. FAU, labeled in black, was used as external validation
without ab initio reference data.
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The unit cell of the systems was fixed, and the simulations
were carried out in the canonical ensemble (N, V, T) at 1000 K,
adopting the CSVR13 thermostat with a time constant of 1 ps to
regulate the temperature. Each system was simulated for a
duration of 20 ps. Snapshots of each system were sampled every
20 timesteps, resulting in a total of 1000 configurations per
strained structure, which were used to build the data set. We
found that during the dynamics, for some strained structures, a
few configurations could have very large forces, and those
outliers would negatively impact the training of the force field.
Therefore, configurations with atomic forces higher than 15 eV
Å−1 were excluded from the data set. Among the 64 considered
structures, one was found to exhibit dynamically unstable
behavior (the most strained cell of JST), leading to its exclusion
from the data set to ensure the integrity and reliability of the
training data.
2.3. Interatomic Potential Training. The interatomic

potential (IP) was trained with the use of neural equivariant
interatomic potentials (NequIP),14 an equivariant graph neural
network approach for learning interatomic potentials from ab
initio calculations for molecular dynamics simulations. NequIP
represents a significant advance over prior nonequivariant
models, by utilizing higher-order tensors instead of relying solely
on scalar features. This allows NequIP to capture the
complexities of molecular systems more effectively, encoding
bond angles, dihedral angles, and other angularly dependent
features in a more flexible manner�something of high interest
in this work given the strongly directional nature of the
interactions. Compared to other deep neural network models,
this approach is more efficient, requiring a smaller training set to
develop accurate machine-learned interatomic potentials
(MLIPs).

The development of the NequIP model depends on several
hyperparameters, which determine the accuracy of the potential
and the efficiency of the training procedure. In this work, we
tuned these hyperparameters to improve the model’s perform-

ance and sufficiently capture the physics of the systems
described. Specifically, before training our final model, we
explored the effects of the cutoff radius (rmax), which regulates
the range of interatomic interactions considered, and the
maximum rotational order (Lmax), which limits the rank of the
tensor product considered by NequIP. Additionally, we
investigated hyperparameters that impact the learning behavior
itself (i.e., the optimization of the ML model): we looked at the
influence of the initial learning rate (LR) and the number of
interaction blocks in the network on the training speed.

The tuning process involved systematically adjusting the
parameters and assessing their effects on the model’s accuracy
and computational efficiency. In order to avoid overfitting and
limit data leakage, this optimization of the hyperparameters was
conducted on a subset of the training set, focusing on zeolite
frameworks SOD, BEC, and JST. The selected zeolites represent
a diverse range of structures in terms of size and density; they
range from small (SOD, 36 atoms) to medium (BEC, 96 atoms)
and large (JST, 144 atoms) unit cell zeolites and, in density, span
from 1.8 g/cm3 (SOD) to 1.55 g/cm3 (BEC) and 1.4 g/cm3

(JST). This also allowed us to restrain the computational load
during systematic tests, and efficiently explore a wider range of
values for the hyperparameters.
2.4. Classical Molecular Dynamics Simulations. We

then used our trained interatomic potential (IP) to perform
molecular dynamics (MD) simulations with the LAMMPS
code,15 using the pair_nequip pair style provided by the NequIP
developers and available online at https://github.com/mir-
group/pair_nequip.

For each zeolite framework, we created a 2 × 2 × 2 supercell
based on the crystalline unit cell obtained from the IZA
database. The equations of motion were integrated using a time
step of 0.5 fs in all simulations. The following procedure was
followed for all classical simulations:

Table 1. Comparison between the Lattice Parameters and Volume of the Zeolite Frameworks used in the Training Set Obtained
from DFT Minimization and MLIP Molecular Dynamic Relaxation

Framework Method a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) ΔV/V (%)

JNT MLIP 8.231 14.179 13.495 90.00 87.125 90.00 1573 −0.37
DFT 8.237 14.167 13.602 90.00 87.125 90.00 1579

NPT MLIP 13.940 13.940 13.940 90.00 90.00 90.00 2709 −0.45
DFT 13.961 13.961 13.961 90.00 90.00 90.00 2721

PUN MLIP 14.713 8.659 18.972 90.00 90.00 90.00 2417 0.44
DFT 14.647 8.621 19.058 90.00 90.00 90.00 2406

WEI MLIP 11.782 10.260 9.972 90.00 90.00 90.00 1205 −1.79
DFT 11.919 10.346 9.954 90.00 90.00 90.00 1227

ANA MLIP 13.366 13.366 13.367 90.00 90.00 90.00 2388 −0.06
DFT 13.369 13.369 13.369 90.00 90.00 90.00 2389

LTA MLIP 11.826 11.826 11.826 90.00 90.00 90.00 1654 −0.21
DFT 11.834 11.834 11.834 90.00 90.00 90.00 1657

JST MLIP 15.072 15.072 15.072 90.00 90.00 90.00 3424 1.96
DFT 14.975 14.975 14.975 90.00 90.00 90.00 3358

FER MLIP 18.502 13.915 7.336 90.00 90.00 90.00 1888 −0.43
DFT 18.575 13.926 7.333 90.00 90.00 90.00 1897

BEC MLIP 12.643 12.643 12.848 90.00 90.00 90.00 2054 −2.45
DFT 12.606 12.606 13.250 90.00 90.00 90.00 2106

SOD MLIP 8.661 8.661 8.661 90.00 90.00 90.00 649.8 1.52
DFT 12.606 12.606 13.250 90.00 90.00 90.00 640

RHO MLIP 14.524 14.524 14.524 90.00 90.00 90.00 3064 −7.46
DFT 14.905 14.905 14.905 90.00 90.00 90.00 3311
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1. Relaxation. Initially, each structure was relaxed through
200 ps of constant pressure (N, P, T) MD simulation at a
temperature of 20 K and a pressure of 0 GPa.

2. Temperature ramping. The conditions were then
switched to constant volume (N, V, T), and the
temperature was gradually increased to the target value
over a 10 ps simulation.

3. Equilibration. Subsequently, the conditions were
switched back to (N, P, T), and 200 ps of dynamics
were performed at the target temperature and pressure.

In all (N, P, T) simulations, pressure and temperature were
controlled using the Nose−́Hoover thermostat16,17 and the
Nose−́Hoover barostat,18 with damping time scales of 50 and
500 fs, respectively. In the (N,V,T) simulations, only theNose−́
Hoover thermostat was employed. For simulations at pressures
higher than 1 GPa, the use of a pressure ramping approach
would increase the stability of the simulation, allowing the
system to reach a higher pressure (from 3 to 10 GPa, depending
on the system) almost quasistatically, compared to initializing
the system directly at the target pressure (which would fail above
the range of 3−4 GPa).

These simulations explored a temperature range between 20
and 900 K for evaluating the thermal properties. Mechanical
properties were investigated at 20, 300, and 600 K and in a
pressure range of up to 0−10 GPa. Properties of interest were
computed as averages from the last 50 ps of each simulation.
Furthermore, the elastic constants were computed at 20 K using
the ELASTIC_T scripts from LAMMPS, applying a strain of 2%
to the simulation box.

The effects of the simulation box size were tested for CHA
using unit cells, 2 × 2 × 2, and 3 × 3 × 3 supercells, on both
thermal expansion and elastic constants, revealing negligible
differences.

3. RESULTS AND DISCUSSION
3.1. Force Field Training and Hyperparameters

Tuning. Out of the data sets obtained for the 17 frameworks,
11 were used for training the interatomic potential, while the
remaining 6 data sets served as a test set to evaluate the
performance of the trained potential and its generalizability
across unseen zeolitic topologies�an important quality for the
exploration of novel materials. To optimize the potential

Table 2. Comparison between the Lattice Parameters and Volume of the Zeolite Frameworks Used in the Evaluation Set
Obtained from DFT Minimization and MLIP Molecular Dynamic Relaxation

Framework Method a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) V (Å3) ΔV/V (%)

MOR MLIP 17.865 20.095 7.381 90.00 90.00 90.00 2650 −0.31
DFT 17.789 20.173 7.406 90.00 90.00 90.00 2658

MFI MLIP 20.024 19.674 13.099 90.00 90.00 90.00 5204 −0.45
DFT 20.103 19.596 13.211 90.00 90.00 90.00 5228

GIS MLIP 9.539 9.539 9.886 90.00 90.00 90.00 900 −0.51
DFT 9.570 9.570 9.872 90.00 90.00 90.00 904

CHA MLIP 9.285 9.285 9.285 93.87 93.87 93.87 795 0.06
DFT 9.286 9.286 9.286 94.06 94.06 94.06 794

HEU MLIP 17.346 17.466 7.326 90.00 116.10 90.00 1993 0.82
DFT 17.246 17.550 7.310 90.00 116.68 90.00 1977

TON MLIP 13.536 17.122 5.044 90 90 90 1169 −1.32
DFT 14.012 17.114 4.940 90 90 90 1185

Figure 2. Correlation plot between the relaxed volume computed at the DFT (SCAN) level and with the trained MLIP for the different frameworks
used in the training set (blue dots) and as the evaluation set (red dots).
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training procedure, a subset of the data set comprising data from
SOD, BEC, and JST was selected. This subset comprised a total
of 12 300 configurations, which were subsequently divided into
11 100 configurations for training and 1200 configurations for
validation in the cross-validation scheme. In all of the training
sessions, the loss function was minimized by adopting the same
scaled weights on forces and energies.

Hyperparameters such as rmax (cutoff radius for interatomic
interactions) and Lmax (maximum rotation order considered by
NequIP) were tested and optimized. Other hyperparameters
used default values, as suggested by the NequIP developers. As
depicted in Figures S1 and S2, increasing rmax improves the
accuracy of the potential, with convergence reached with fewer
iterations. Furthermore, higher accuracies and faster con-

vergences are achieved by increasing the number of layer blocks
from 3 (Figure S1) to 5 (Figure S2).

The highest accuracy is obtained with an rmax of 6 Å and five
layer blocks. However, adopting an rmax of 5 Å provides very
close accuracy, with an increase of the MAE of the forces from
30.2 to 30.4 meV Å−1 and an increase of the MAE of the energy
per atom from 0.130 to 0.164 meV. In addition, this choice saves
about 20% (22 h) of the total GPU time of the training, which
would result in a much more significant GPU time saving on the
training of the whole data set, and will result in a more efficient
model in production simulations as well.

The results of these tests show that both rmax and Lmax have a
significant impact on the final accuracy of the trained model.
While a value of rmax = 4 Å may intuitively seem large enough to
describe the atomic environment around Si and O in a zeolitic
framework, we find that larger values of 5 and 6 Å lead to a
further improvement of both forces and energies, as shown in
Figure S3. Moreover, by increasing the number of interaction
layers in the model from 3 to 5, there is an overall improvement
in performance, while the differences between models obtained
with different rmax values are decreased. Given the similar
performances of the models with rmax = 5 Å and rmax = 6 Å, and
the lower computational cost of the former, we settled on rmax =
5 Å as a compromise for all the following tests.

Another parameter that affects the accuracy of the model is
the value of Lmax which represents the maximum rotation order
considered by NequIP. Typically, good results are obtained with
a value of 1, while increasing it to 2 can lead to improved
accuracy at the expense of speed and memory requirements. In
our evaluation, we assessed the balance between the increase in
accuracy achieved with a higher Lmax and the associated increase
in computational cost. Based on the training curves depicted in
Figure S4, we see that increasing Lmax to 2 resulted in a modest
improvement in the accuracy of the model for forces and
energies, with a decrease of approximately 0.9 meV Å−1 and 0.04

Figure 3. Plot of the percentage variation of the volume with the
temperature, between 20 and 1000 K, for the different frameworks
considered.

Table 3. Computed Volumetric and Linear Thermal Expansion Coefficients for Different Temperature Rangesa

Zeolite Temp Range (K) (Exp. Range) αV (MK−1) αa (MK−1) αb (MK−1) αc (MK−1)

CHA 20−300 −28.12 −14.46 −14.90 1.21
CHA 300−600 −15.67 −6.30 −6.57 −2.79
CHA 600−900 −10.52 −5.34 −14.53 −4.49
CHA 900−1000 −8.24 −2.33 −5.77 −0.21
CHA 20−1000 −16.80 −7.59 −10.81 −1.45
CHA 300−900 (293−873,32 308−75329) −13.07 (−28.5,32 −21.2229) −5.29 (−8.24,32 −9.1129) −9.79 (−8.24,32 −9.1129) −2.89 (−13.3,32 −3.0829)
SOD 20−300 35.87 11.96 11.96 11.96
SOD 300−600 62.83 20.94 20.94 20.94
SOD 600−900 43.57 14.52 14.52 14.52
SOD 900−1000 (1033−112324) −22.11 (−14.024) −7.37 (−4.724) −7.37 (−4.724) −7.37 (−4.724)
SOD 20−900 39.72 13.24 13.24 13.24
SOD 20−1000 34.85 11.62 11.62 11.62
LTA 20−300 (100−30033) 12.34 (−22.133) 4.11 (−7.3733) 4.11 (−7.3733) 4.11 (−7.3733)
LTA 300−600 4.92 1.64 1.64 1.64
LTA 600−900 0.10 0.03 0.03 0.03
LTA 900−1000 −3.81 −1.27 −1.27 −1.27
LTA 20−1000 3.20 1.07 1.07 1.07
FAU 20−300 (25−29830) −5.40 (−15.830) −1.80 (−2.530) −1.80 (−2.530) −1.80 (−2.530)
FAU 20−600 (25−57330) −4.93 (−12.630) −1.64 (−4.230) −1.64 (−4.230) −1.64 (−4.2)
FAU 300−600 (298−573) −0.23 (−13.6) −0.08 (−4.6) −0.08 (−4.6) −0.08 (−4.6)
FAU 300−900 (298−92331) −0.76 (−11.831) −0.25 (−4.031) −0.25 (−4.031) −0.25 (−4.031)
FAU 900−1100 (923−112331) 1.76 (30) 0.59 (10) 0.59 (10) 0.59 (1031)
FAU 20−1000 −2.33 −0.78 −0.78 −0.78

aExperimental values are reported in parentheses for the appropriate temperature range.
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meV. However, this improvement came at the cost of a
significant increase in the simulation time, approximately 90%
longer (88 h vs 171 h on our hardware). Additionally, it is worth
noting that the MAE of the forces from training and validation
diverged in the case of the model with Lmax = 2. Considering the
limited improvement in accuracy and the substantial increase in

computational cost associated with a higher Lmax value, we
decided to keep it fixed at 1.

Lastly, we also examined the effect of the initial learning rate
(LR) used during training. From the tuning test conducted, we
concluded that the most balanced set of parameters to use in the
training, which included the full data set, would be constituted
by rmax = 5 Å, five interaction blocks, Lmax = 1, and an initial LR =
0.005.

With the selected hyperparameters, the final training was
performed on the full set formed by the atomic configurations,
atomic forces, and unit cell energies for 41 000 configurations,
split into 37 000 and 4000 between training and validation,
respectively, from the frameworks ANA, BEC, FER, JNT, JST,
LTA, NPT, PUN, RHO, SOD, and WEI. The resulting training
and validation curves are reported in Figure S5. Each training
task was performed on a single GPU, the NVIDIA V100 Tensor
Core GPU. The training of the test models required between 4
and 9 days each, while the training of the final model required 21
days.

All training was originally performed with the main (stable)
development branch of NequIP, which does not include the
computation of the stress, and the potentials resulting from this

Figure 4. Pressure/density (a), pressure/energy (b), and volume/
energy (c) curves for the SOD framework in the −1 to +2 GPa range.

Table 4. Bulk Modulus and Pressure Derivative of the Bulk
Modulus Obtained by Fitting the Third-Order Birch−
Murnaghan Equation of States and the Pressure at Which a
Transition Was Observed

Framework T (K) B0 (GPa) B0′ Pt (GPa)

SOD 20 25.0 3.43 �
300 24.6 6.94 �
600 10.0 −7.44 0−0.5

CHA 20 20.0 10.65 1.4
300 47.4 21.90 1.0
600 52.1 30.21 0.8−1.0

FAU 20 61.7 13.78 0.8−3.4
300 45.3 16.40 1.8−3.0
600 37.0 7.54 2.6−3.0

Figure 5. (a) Pressure/density, (b) pressure/energy, and (c) volume/
energy curves for the FAU framework in the −1 to +3.5 GPa range.
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branch were unable to describe the volume variation of the
zeolites and could not be used in constant-pressure MD
simulations. To overcome this shortcoming, the ML potential
obtained from the main branch was updated by performing a
single step of training adopting the stress-branch version of
NequIP, which encoded the evaluation of the virial on the final
form of the deployed potential. To check that this update did not
mess up the potential, the errors on the training set were
computed with both versions, which resulted in negligible
differences on all the metrics considered (below the third
decimal point).

The training curves obtained on the larger and more
diversified training set showed a higher MAE than those
obtained from the initial subset, as expected from increasing the
heterogeneity of the data set. Nevertheless, the computed errors
are well within the range for theMLIPs on siliceous systems.8,9,19

3.2. Generalizability of the Potential. The performance
of the model was further assessed on the single data set for each
zeolite type and on each of the four considered structure
deformations. The whole data set exhibited a mean absolute
error (MAE) on forces of 32.2 meV Å−1, while for the single
framework data sets, the MAE ranges between 29.8 and 34.4

meV Å−1. Concerning the errors for the energies per particle, the
MAE for the training set is 0.51 meV, while for the single
framework data sets, it is 0.46 meV or below, with the exception
of JNT and WEI, which have higher MAE values (1.38 and 1.51
meV, respectively). As a comparison, with another MLIP
recently developed with DeePMD-kit20 on pure siliceous
zeolites, the reported MAE on forces and energies were
respectively 39 meV Å−1 and 7.8 meV per particle, on a training
set of about 280 000 configurations from AIMD simulations on
219 different topologies from the IZA database.19 Another work
adopted SchNet21 to train an MLIP adopting both quartz
polymorphs, well-known zeolite topologies and zeolites
extracted from the Deem database,22,23 reporting MAE values
for energies of 155 meV Å−1 and 3.83 meV per particle.9

By inspecting the metrics for the data set of each deformed
framework, we see that the accuracy may change with the
volume of the unit cell, within the same framework type. In most
cases, the deformed structures with the largest strain−lowest
volume (labeled “2”) and with the largest volume (labeled “3”)
− exhibit the highest and the lowest MAE on the forces,
respectively. A similar trend can be observed with the MAE of
the energies, although with more fluctuations. Within the two
frameworks with the highest MAE, JNT and WEI, the internal
differences between the deformed structures are more striking
than those in the other case.

The performance of the MLIP on the evaluation data set
aligned with that on the training set, showing good general-
ization, except for the TON framework, which displaysMAEs on
forces and energy per particle that are respectively 4−5 times
and 40−80 times higher than those on the training set,

Figure 6. (a) Pressure/density, (b) pressure/energy, and (c) volume/
energy curves for the CHA framework in the −1 to +6 GPa range.

Figure 7. Ratios V0/V, a0/a, b0/b, and c0/c plotted against the applied
pressure for the CHA framework at different temperature values.
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indicating it as a possible outlier. The collected metrics
computed on the training and on the evaluation training set
are reported in Tables S1 and S2.

The trained MLIP was then assessed for the prediction of the
lattice parameters of different zeolitic frameworks, where crystal
shapes were constrained in both static DFT and MD
simulations. Tables 1 and 2 report the comparison between
the results of the two methods. We observe that unit cell
volumes are predicted with an MAE of 1.21%, considering
structures from both the training and test sets, while errors lower
than 0.5% were achieved for 8 out of the 17 frameworks. This
displays better accuracy than empirical zeolite force fields used
in the field, indicating the advantage of the ab initio data-based
force field optimization.

Figure 2 shows the DFT and MLIP computed equilibrium
volumes for the different frameworks, including both the
training and evaluation sets. We note here that the cubic system
RHO exhibited the largest deviation from the DFT results, with
a volume deviation of 7.46%. This is a special (and interesting)
case because DFT optimization revealed two local minima
structures with different volumes, while the MD relaxation
resulted in a structure with a volume close to the metastable,
low-volume configuration. Despite this complication, the
trained MLIP demonstrated reasonably accurate performance,
considering it was trained solely on high-energy structures
without specific consideration of the energy minima.
3.3. Thermal Expansion Simulations. Understanding the

thermal expansion behavior of zeolites has important
implications for practical applications, in part for process
engineering, but also because the diffusivity and reactivity of
the guest molecules in the structure are strongly influenced by
the size of the pores, which can contract or expand with
variations in temperature.

Zeolites are known to be one of the few classes of materials
that can feature negative thermal expansion (NTE), where the
material contracts upon heating, a difference from most
materials that expand upon heating. In zeolites, as in some
other framework materials, the NTE behavior has been
attributed to the presence of rigid unit modes (RUMs)
originating from their corner-sharing tetrahedral structure.
When heated, these RUMs permit the “flexing” or rotation of
these tetrahedral units within the zeolitic framework, causing an
overall contraction of the material, and thereby leading to NTE.
Essentially, the thermal energy allows the rotation of the corner-
sharing tetrahedra, resulting in a smaller overall volume even as
the temperature rises. Both experimental and in-silico
investigations found exceptions to this behavior, i.e., zeolites
with positive thermal expansions (PTE), but since their rarity
and the presence of RUMs in all of these frameworks, it is still
debated that PTE in these systems is due to the nanoporous
nature of the material instead of the framework itself.

The characterization of the thermal behavior of zeolites is
made experimentally difficult by the combination of several
factors. First, the analysis of thermal expansion requires the
presence of single-crystal data, which are difficult to obtain on
fully evacuated/activated samples; in some cases in the
literature, organic templates or solvent molecules are still
present in the pores, which affects the thermal behavior. Second,
several zeolitic frameworks undergo phase transitions upon
heating, which makes their thermal expansion harder to analyze.
Therefore, the computational study of the thermal behavior of
zeolites is an area of active research. In a previous work by our
group, the thermal expansion coefficient of the pure-silica

zeolites was systematically computed through DFT in the quasi-
harmonic approximation (QHA),3 i.e., in a low-temperature
regime, finding that all the investigated frameworks displayed
NTE within the temperature range of 10−300 K. The
exploitation of DFT and QHA to investigate the thermal
properties of the whole zeolitic database is a very demanding
task from a computational point of view; therefore, an
alternative, cheaper, and as accurate approach is desired. The
MLIP was trained on trajectories at different volumes and
degrees of strain; therefore, the rotation of the RUMs should be
captured by the model.

We investigated the thermal expansion behavior of pure-silica
zeolite frameworks, FAU, CHA, LTA, and SOD, through a series
of NPT simulations ranging from 20 to 1000 K. We note that
volume fluctuations during the MD increase with the temper-
ature, making the results less reliable at the higher end of the
temperature range. The thermal expansion curves and computed
thermal expansion coefficients are reported respectively in
Figure 3 and Table 3, and we now discuss them individually
against the known experimental data.
SOD: sodalite shows positive thermal expansion (PTE) up to

800 K, then expansion stops and starts to contract between 900
and 1000 K, in apparent agreement with observations which
found the inversion of the expansion behavior at about 700
K.24,25 It must be noted that while experimental measurements
found a PTE for sodalite minerals in this wide range of T,26 the
study of Leardini et al.24 found for pure silica sodalite PTE
between 273 and 573 K and NTE above 653 K. These
differences were ascribed to the neutral nature of the organic
template they used in the synthesis, which once calcinated did
not interfere with the framework, allowing the contraction of the
structure.
LTA: for the pure-silica LTA zeolite (experimentally called

ITQ-29), PTE was observed from 20 to 400 K; then the volume
is stationary in the range of 400−600 K, followed by NTE from
600 to 1000 K. Unfortunately, the only experimental results
reported on the thermal expansion of LTA are limited to the
low-temperature regime, between 100 and 300 K, where a strong
NTE was observed, with a mean thermal expansion coefficient
(300 to 100 K) of −22.1 × 10−6 K−1.27 At this stage, it is unclear
whether the origin of this discrepancy at low temperature comes
from an inadequacy of the MLIP (which was trained mostly on
high-temperature data) or from the DFT calculations
themselves.
CHA: for chabazite, NTE is found for the whole T range

explored and shows the largest (negative) thermal expansion
coefficient αV among the investigated frameworks, −13.07 ×
10−6 K−1 between 300 and 900 K, in qualitative agreement with
the experimental value (−28.5 × 10−6 K−1).28,29 Different from
the experiments, simulations revealed a larger expansion rate at
low temperature. Moreover, CHA, being a noncubic framework,
has an anisotropic expansion.
FAU: for pure-silica faujasite, NTE is observed up to 900 K,

but it is about an order of magnitude lower than CHA in the 20−
900 K range, in agreement with experiments.30,31 Above 900 K,
the behavior changes to PTE.
3.4. Isothermal Compression Simulations: Phase

Transition and Amorphization. Due to their high porosity,
zeolites undergo very important structural changes in response
to the application of mechanical pressure. There are several
examples of phase transitions involving tilting of the constituent
tetrahedra or changes in the ring structures. Pressure may also
induce pore collapse and a transition to an amorphous state,
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which can retain some topological order from the parent
crystalline phase and is distinct from common silicate glasses.

We investigated the structural effects of compression on the
frameworks SOD, CHA, and FAU through a series of (N, P, T)
simulations at increasing values of applied pressure. The
influence of temperature was evaluated by performing these
series of simulations at 20, 300, and 600 K. The range of pressure
investigated shows a variation in the cell volume that can exceed
that imposed on the structure for the generation of the training
data (i.e., between +1.5% and −3.0%). We also performed
calculations of the second-order elastic tensor at 20 K in order to
demonstrate the potential for the MLIP to describe anisotropic
mechanical properties and to investigate the influence of system
size by comparing 2 × 2 × 2 supercells and 3 × 3 × 3 supercells.
These results are reported and discussed in the Supporting
Information.
SOD: the mechanical properties of siliceous sodalite were

experimentally found to be significantly influenced by the nature
of the contained template species, even in cases of supposedly
weak interactions.34−37 For instance, the experimental bulk
modulus B0 ranges between 24 GPa37 and 132 GPa.36 This
variability is justified by the existence of two low-pressure phases
with different compressibilities, whose relative stability at
ambient pressure is influenced by the template species. Ab
initio investigations at the PW91 DFT level on ideal, template-
free silica sodalite found that the zero-pressure phase belongs to
the high symmetry Im3̅m space group and undergoes a phase
transition at 0.12 GPa to the I4̅3m group, with a loss of inversion
symmetry.38 Additionally, two other phase transitions were
identified with further compression up to about 4 GPa,
preserving the lattice symmetry of I4̅3m. The I4̅3m phase was
found to be less compressible, with a computed bulk modulus of
113 GPa, closely resembling the experimental value of ∼132
GPa. The three high-pressure I4̅3m phases became progressively
more compressible with the bulk modulus decreasing from 67 to
15 GPa. However, the agreement with experimental results is
only partial: for example, in the case of dioxolane silica SOD, a
transition from cubic to rhombohedral was observed at
pressures higher than 1.2 GPa, with the trigonal space group
being either R3m or R3.37 This discrepancy with the ab initio
calculations is likely due to the constraints adopted in the
simulations, which preserved the cubic symmetry of the lattice.
All of the studies indicated the increase in the tilting of the silica
tetrahedra as the main mechanism of compression underlying
the phase-transition Im3̅m/I4̅3m, which is supposed to be
continuous. On all-silica SOD, pressure-induced amorphization
has not been reported in any experimental work.

Our simulation studies found that the behavior of sodalite
under pressure changes with temperature: no phase transitions
were observed at 20 K in the whole range of P explored (from −1
to 10 GPa), and the structure of minima is located very close to
zero pressure, as shown in Figure 4. Similar results were found at
300 K, with the minima structure shifted to about 0.2 to 0.3 GPa.
At 600 K, the low-pressure part of the PES curve is difficult to
interpret, but a continuous transformation is observed below 0.5
GPa, with a decrease of volume of about 8% (the experimental
one of dioxolane silica sodalite in the same P range at 300 K is
3%).37 No further transitions were found at higher pressure: the
isotropic constraints adopted in these simulations prevent the
breaking of the lattice symmetry and, thus preventing the
observation of the experimentally characterized cubic to
rhombohedral transition. A recent work that used the consistent
valence force field characterized the pressure-induced amorph-

ization of SOD at 300 K, finding it occurring as a discontinuous
transition at 6.81 GPa.39

As shown in Table 4, the bulk modulus at 20 and 300 K
(obtained through the third-order Birch−Murnaghan equation
of state, seeMethods) are very close, 25.0 and 24.6 GPa, whereas
at 600 K, it decreases to 10.0 GPa. The computed low-
temperature values are a good match for the experimental values
obtained for the lower symmetry I4̅3m phase rather than the
ground state, larger, Im3̅m phase. The negative value of B0′ at
600 K underlines the characterized low-pressure phase
transition.
FAU: the experimental characterization under pressure of the

purely siliceous faujasite is quite limited. One work investigated
the effect of pressure on the IR spectra of the highly siliceous
zeolite Y (Si:Al = 100), finding a phase transition from about 1.7
to 2.2 GPa associated with the amorphization of the network.40

The hypothesized mechanism of amorphization involves
primarily the deformation of the double six-membered rings
forming the sodalite cages in the network, up to rupture or
severe distortion.

Another work characterized the elastic properties of a pure
siliceous faujasite, deriving a bulk modulus B0 of 38 GPa, the
same as α-quartz, and the start of amorphization at 2.2 GPa.41

Our simulations revealed a temperature-dependent relationship
between the onset pressure of amorphization and the pressure
range within which it occurs, as shown in Figure 5. At 20 K,
amorphization initiates between 0.8 and 3.2 GPa; beyond this
pressure, the structure collapses, resulting in a 10% volume
reduction, followed by unstable dynamics upon further pressure
increases. At 300 K, amorphization occurs within a narrower
pressure range of 1.8−2.6 GPa, preceding structural collapse. At
600 K, the transition appears to take place between 2.4 and 2.6
GPa, just before structure collapse. The computed B0 values,
fitted between −1 and 1.6 GPa, showed an increasing
compressibility of the zeolite with T, from 61.74 to 45.33 to
37.03 GPa in the range of 20 to 600 K, with the latter values in
good agreement with the experimental value.
CHA: the experimental characterization of the pure silica

chabazite under pressure has found a phase transition at room
temperature from the rhombohedral space group R3̅m to the
triclinic P1̅ occurring at 1.42 GPa.42 The triclinic symmetry of
the cell is preserved up to 3.47 GPa, and then complete,
irreversible amorphization is reached at 5.33 GPa.

The simulation results for chabazite under pressure revealed a
phase transition within the 0.8 to 1.4 GPa range (Figure 6). In
the case of CHA, temperature influences the processes, albeit
with a more complex interpretation due to the anisotropic
structure. As depicted in Figure 7, at 20 K, compressibility shifts
from negative to positive strain, with compression affecting
solely the c-axis contraction of the hexagonal cell until reaching
the phase transition at 1.4 GPa. This transition is characterized
by a volume decrease of approximately 15% and a reduction in
the c-axis, accompanied by a minor expansion of lattice
parameters a and b, indicative of auxetic behavior. Beyond this
pressure, the structure continues to contract predominantly
along the c-axis, leading to simulation failure at pressures
exceeding 6 GPa. Similarly, at higher T, volume contracts prior
to the phase transition, occurring between 0.6 and 1.0 GPa at
300 K, and between 0.8 and 1.0 GPa at 600 K, predominantly
affecting the c-axis. Post-transition, the a and b lattice parameters
slightly increase, yet under additional stress they exhibit more
significant contraction than at lower temperatures. The
calculated value of B0 indicates a reduction in compressibility
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with increasing temperature, but no experimental data are
available on this for comparison.

4. CONCLUSIONS
In this work, we developed a machine learning interatomic
potential (MLIP) for pure silica zeolites trained on a diverse set
of high-temperature ab initio molecular dynamics data
encompassing various zeolitic topologies. The MLIP was
successfully utilized to simulate the structure, thermal expansion
properties, and the effects of pressure on selected zeolites,
demonstrating high accuracy and transferability. Notably, the
ability of the MLIP to generalize to other zeolitic frameworks
was confirmed by its accurate performance on zeolite structures
not included in the training set, indicating its potential
applicability to a wide range of pure silica zeolite frameworks.
The generalizability of our MLIP suggests a promising path for
the exploration and development of novel zeolitic materials, with
broad implications for the chemical industry and the nano-
porous materials modeling community. Indeed, molecular
dynamics simulations of zeolites are commonly employed for
the characterization of their framework dynamics and response
to the application of temperature and pressure, but existing
classical interatomic potentials can only describe interactions
with limited accuracy, while density functional theory, mean-
while, is accurate but has a very high computational cost. The
use of MLIP offers an interesting middle-ground choice in the
computational toolbox of materials scientists and physical
chemists. This will allow, in future work, to revisit the questions
of high-throughput screening of zeolites for energetic,
mechanical, and thermal stability, as well as the question (still
widely open) of the experimental feasibility of zeolitic
frameworks.
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