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ABSTRACT: Nanoporous materials serve as very effective media for
storing and separating small molecules. To design the best materials for
a given application based on adsorption, one usually assesses the
equilibrium performance by using key thermodynamic quantities such
as Henry constants or adsorption loading values. To go beyond
standard methodologies, we probe here the transport effects occurring
in the material by studying the self-diffusion coefficients of xenon inside
the nanopores of the framework materials. We find good correlations
between the diffusion coefficients and the pore aperture size as well as
other geometrical and energetic descriptors. We used extensive
molecular dynamics simulations to calculate the diffusion coefficient
of xenon in 4873 MOFs from the CoRE MOF 2019 database, the first
large-scale database of transport properties published at this scale. Based
on these data, we present a tool to quickly evaluate the diffusion energy barrier that proved to be very correlated to the diffusion rate.
This descriptor, alongside other geometrical characterizations, was then used to build a machine learning model that can predict the
xenon diffusion coefficients in MOFs. The final trained model is quite accurate and shows a root-mean-square error on the log10 of
the diffusion coefficient equal to 0.25.

1. INTRODUCTION
Separation processes are omnipresent in the industry in many
areas, including energy, environment, and health, to separate
chemical mixtures into pure components through operations
such as distillation, molecular sieving, etc.1,2 These processes
account for a significant fraction of the world’s energy
consumption, and therefore the design of more energy-efficient
separation methods could help lower global energy use, carbon
dioxide emissions, and pollution.3 While distillation is the
chemical engineering process most commonly associated with
chemical separation and purification, other options exist such
as crystallization, adsorption, and membranes. Microporous
materials, such as porous amorphous polymers4 or nanoporous
crystalline materials,5 are among the materials frequently used
for both adsorption and the design of membranes.

In molecular separation processes based on nanoporous
materials, microscopic transport properties are key to the
kinetics of the adsorption process on the macroscopic scale.
Two distinct use cases for nanoporous materials in separation
processes exist: adsorption-based separation, which is primarily
a thermodynamic process, and nanoporous separation
membranes, which rely on both kinetic and thermodynamic
properties. Depending on the targeted application, diffusion is
either the main performance metric (for membranes) or a
secondary parameter (for adsorption) that is often overlooked.
In processes based on molecular sieving, for instance, gases are
passed through a membrane material that selectively blocks

certain atoms or molecules on the basis of their size, while
allowing other particles to diffuse freely.6 In the steady state,
the performance of the separation is in part related to the ratio
of diffusion coefficients for the species involved. On the other
hand, thermodynamic selectivity is the primary performance
metric in adsorption-based separation processes commonly
performed at the industrial scale, such as pressure and/or
temperature swing adsorption.7,8 However, even in those cases,
it is worth considering that the kinetic performance can
enhance the overall industrial process.9 For instance, in
breakthrough experiments used to characterize the compara-
tive adsorption performances of a gas mixture�and somewhat
akin, at the lab scale, of a pressure swing adsorption�the
shape of the breakthrough curve can be explained by diffusion
processes.

Despite the importance of guest transport properties, most
high-throughput computational studies based on atomistic
simulations of nanoporous materials so far have focused
heavily on the thermodynamics of adsorption,10−12 studying
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adsorption parameters such as adsorption enthalpy, adsorption
entropy, Henry constant, uptake isotherms at various temper-
atures, loading at specific values of pressure, working capacity,
and other such thermodynamic quantities.13−15 Here, we want
to explore this frequently overlooked aspect through a high-
throughput screening approach, and we therefore focus on a
single quantity: the guest diffusion coefficient in the low
loading regime (or low pressure limit). While transport
phenomena in nanoporous media are very complex, we want
to start addressing the issue with a manageable quantity and
therefore have chosen the low-loading diffusion coefficient as a
first target.

The diffusion coefficient of a guest molecule inside
nanopores is relatively straightforward to calculate from
molecular dynamics (MD) simulations.16 However, this
approach has a very high computational cost, explaining in
part why it has not been routinely adopted in high-throughput
studies�although some examples exist in the literature:
Altintas et al. studied the diffusion of H2 and CH4 in 4240
MOFs;17 Zhou and Wu calculated minimum energy paths for
the diffusion of polyatomic molecules;18 and Bukowski and
Snurr characterized the diffusion of a chemical warfare agent
simulant in a diverse set of 776 Zr-based MOFs.19 More
recently, alternative approaches have been proposed and
developed to compute the diffusion coefficient of species
directly from the characteristics of the potential energy field of
the diffusing particles.20,21 These approaches are very efficient
because they do not require the explicit molecular simulation
of the dynamics of the diffusion itself but instead are built on
physics-informed approximations linking the underlying
potential energy surface (PES) to the transport properties.

In this paper, we implemented and tested a third approach
to this problem, based on the generation of a large database of
self-diffusion coefficients and the application of statistical
learning. We first performed explicit MD simulations on a
subset of the Computation-Ready Experimental MOF (CoRE
MOF) 2019 database in order to compute diffusion
coefficients for a specific guest molecule�we have chosen
xenon to illustrate our algorithm. We then introduced a grid-
based algorithm to calculate the diffusion energy barrier values
for guest migration inside the nanoporous material. We then
trained a machine learning (ML) model on our database, using
as features this energy barrier alongside key geometrical
descriptors, such as the pore-limiting diameter (PLD). We
found that the final model is sufficiently accurate for the
purpose of a fast estimation of the self-diffusion coefficient,
showing an RMSE on the log10 of the diffusion coefficient
equal to 0.25. We then discuss the perspectives opened by this
new methodology.

2. METHODS
The several computational methods that have been proposed
to calculate diffusion coefficient values in nanoporous materials
can be broken down into two main categories: methods based
on MD simulations and those relying on the application of the
transition-state theory (TST).22 The first approach is probably
the most “natural” way, leveraging physically meaningful MD
trajectories of adsorbates inside the nanoporous material, but it
is computationally intensive. The second approach is much
faster, relying only on the PES instead of computing long
trajectories but represents an important approximation. In this
work, we use statistical learning to predict MD-based diffusion
coefficients by using approximate values coming from a TST-

based method, augmented with other descriptors of the
nanoporous geometry.

2.1. Screening of Transport Properties. Using system-
atic MD simulation, we calculated xenon self-diffusion
coefficient values at infinite dilution (no guest−guest
interactions) for 6525 nondisordered materials from the
CoRE MOF 2019 database,23,24 chosen to be the most
thermodynamically selective for Xe/Kr separation based on a
previous screening study.25 From this set, we removed a small
number of structures (291) that had several, inequivalent
channels�since we can only probe one channel at a time in an
infinite dilution MD simulation�that would cause inaccurate
sampling in materials with several channels.

For each material, MD simulations were performed using
the RASPA2 software16,26 on the calculation machines (Intel
Xeon Platinum 8168 cores at 2.7 GHz). Simulations were
performed in the (N, V, T) ensemble with a Nose−́Hoover
thermostat at T = 298 K. The simulations were set up with a
maximum of 500 million MD steps, but we also set a CPU
time limit of 60 h. Within this time constraint, 3899 structures
completed all 500 million steps.

We then used the mean squared displacement (MSD),
corresponding to the average of the squared displacement of
the xenon atom ⟨r(t)2⟩ in the nanoporous material at time t, to
determine the diffusion coefficients through the Einstein
equation

=r t D t( ) 62
diff (1)

The RASPA2 software uses a multiple-window algorithm
developed by Dubbeldam et al.27 to probe different time scales
of the MSD data when running MD simulations. We used this
software for our MD calculations, with the default value of 25
for the sampling rate (“SampleMSDEvery” parameter), 500
million time steps, and a relatively large value of 5 fs for each
step, in order to obtain sufficiently long dynamics�which we
confirmed was acceptable in the absence of dynamics for light
elements in the system. For larger structures, which did not
complete the full MD trajectory, we set up a criterion for the
convergence of the MSD calculation: we included trajectories
that had a good linear fit, with a correlation coefficient R2 >
0.9.

The final methodological choice in our exploration was the
following: what characteristic time range do we use to fit the
MSD profiles and obtain diffusion coefficients? Based on
manual examination of the MSD data on several materials, it is
clear that there was no one-size-fits-all answer, but we typically
found that most materials exhibited a clear diffusion regime in
one of the two time windows: 2−47 and 50−950 ns. We
decided to avoid adding physical insights or intuition into the
process, and in a data-based approach, we chose for each
material the time window that corresponded to the fit with the
highest determination coefficient (ranging from 0 to 1)�as
highlighted in the case of structure KAXQIL_clean in Figure
S9. After this fitting step, structures with a determination
coefficient R2 below 0.9 were removed, leaving 5125 structures
reported in the following and used for drawing structure−
diffusivity relationships, correlation analyses, and prediction
model development.

2.2. Energy Barrier. A few years ago, Mace et al. developed
an algorithm to calculate self-diffusion coefficients from the
PES of an adsorbate molecule, based on the TST.20 In their
work, they used a clustering algorithm to identify the
adsorption sites, transition states, and connecting tunnels
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within the material for a specific adsorbate, which are then
leveraged to run a lattice kinetic Monte Carlo simulation, from
which the MSDs are deduced. We were inspired by this
approach but were more interested in the present work in the
use of the energy barrier itself: instead of using it to determine
transition probabilities, we have developed a simplified version
of the algorithm that only focuses on the energy at which the
diffusion tunnels have percolated (i.e., become all connected).

Recently, we developed the GrAED algorithm that efficiently
computes energy grids in nanoporous materials: we divided the
unit cell into small voxels, whose size was typically between 0.1
and 0.2 Å. For each voxel, we computed the host−guest
interaction energy that would have a guest molecule placed in
the center of that voxel. While this concept was not novel, we
recently made strong improvements in its computational
efficiency, by using the symmetry of the host framework and
excluding from calculations the space occupied by framework
atoms.28 This grid is a discrete representation of the PES of a
guest molecule inside the framework. From this PES surface
representation, the energy minima were determined. Then, in
order to determine the values of the energy barrier for
diffusion, we then needed to develop an algorithm that detects
all-connected clusters within the energy grid. A breadth-first
search algorithm was employed to label different connected
components within a given channel between Emin and Emin +
iδE (at the ith iteration). By monitoring changes in the number

of connected components between two energy values, the code
automatically detected the energy ETS at which components
reconnected and formed a channel (allowing diffusion from
one boundary to another). The activation energy Ea was then
calculated as the difference between the calculated transition-
state energy ETS and the minimal energy Emin within the
channel: Ea = ETS − Emin.

To illustrate the approach, here we show the case of
KAXQIL,29 where the barrier detection was performed using
an energy step δE of 0.3 kJ mol−1. A single symmetrically
unique type of channel was identified in KAXQIL, with a
minimal energy of −44.3 kJ mol−1�the various channels
shown in Figure 1c are all symmetrically equivalent. The code
detected a single merge that resulted in a fully connected
component within the channel. This merging occurred at an
energy of −25.7 kJ mol−1 (as depicted in Figure 1b), indicating
that the estimated activation energy was 18.6 kJ mol−1 with an
uncertainty of 0.3 kJ mol−1 (due to the energy step used).a

In the simplest case of one unique merge of a unidimen-
sional channel, the method demonstrates strong performance,
and it becomes possible to associate the activation energy with
a diffusion rate kdiff using the Arrhenius equation

=
i
k
jjjjj

y
{
zzzzzk A

E
k T

expdiff
a

B (2)

Figure 1. 3D visualization of channels within KAXQIL using different energy thresholds Emax. Depending on the maximum value of energy allowed,
the channel is either composed of unconnected basins (a) or they are fully connected (b,c). This illustrates the principle of energy barrier detection.

Table 1. Features Used in the ML Model for Diffusion Coefficient Prediction

feature name symbol description

barrier Ea energy barrier: difference between transition-state energy ETS and the minimal energy Emin within a channel
(in kJ mol−1)

adsorption_enthalpy ΔadsH0
Xe(channel) xenon adsorption enthalpy within a channel calculated using the barrier algorithm (in kJ mol−1)

framework mass Mf molar mass of the framework material considered (in g mol−1)
framework density ρf mass density of the framework material considered (in kg m−3)
ASA SA surface area accessible to a 1.2 Å radius probe (in m2 cm−3)

PO_VF_2.0 =
V

V
VF pore

tot
void fraction or the ratio of the pore volume occupied by a 2 Å radius probe over the total material volume

D_f_vdw_uff298 PLD or Df PLD of the largest free sphere diameter calculated using the UFF-dependent definition (in Å)
D_if_vdw_uff298 LCD or Dif the largest included free sphere diameter in a free diffusion path calculated using the UFF-dependent definition (in Å)
delta_LCD_PLD LCD−PLD difference between the LCD and PLD values (in Å)
1D_chan 11D binary feature: 1 if there is a unidimensional channel, 0 otherwise
2D_chan 12D binary feature: 1 if there is a bidimensional channel, 0 otherwise
3D_chan 13D binary feature: 1 if there is a tridimensional channel, 0 otherwise
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where A is a prefactor that depends on the temperature and
system (adsorbate and adsorbent). This is a simplified version
of the transition probability used in TST-based methods. In
the case of a unidimensional channel with a single possible
transition, the diffusion coefficient is directly associated with
the diffusion rate. The problem can be reduced to a
unidimensional random walk with a given transition proba-
bility, and the diffusion coefficient is given by D = kdiffL2/2,
where L is the distance between two basins. In this special case,
there exists a direct relationship between the diffusion
coefficient and the activation energy, such that log(D) ∝ Ea.
For more complex systems, the relationship may be more
complex, hence the need for our statistical learning approach.

We calculated the xenon diffusion barrier energy for all 5125
structures previously selected for screening of the diffusion
coefficient. An energy step of δE = 0.1 kJ mol−1 was employed
during the energy loop to determine the minimal energy
barrier for each unique channel in the material. Then, to avoid
any potential noise arising from the MD simulation
initialization problem, materials with significantly different
energy barrier values from one channel to another (standard
deviation of energy barrier values higher than 1 kJ mol−1) were
excluded, reducing the number of structures considered to
4873.

2.3. Energetic and Geometrical Descriptions. The
approach chosen in this work is to rely on a fast energy
evaluation to boost the performance of the ML model, instead
of simply adding a maximum information on the chemical,
geometrical, and adsorptive properties of the material as
typically done in previous studies.30 The total set of descriptors
for our model, detailed in Table 1, is relatively restricted.

The activation energy Ea and the adsorption enthalpy
ΔadsH0

Xe within a channel were both obtained by the energy
barrier algorithm described above. The adsorption enthalpy
does not require many more computational resources to
compute and can be seen as a cheap descriptor that comes with
the more useful barrier descriptor Ea.

We also added information on the pore size distribution
inside the nanoporous material, characterized by geometrical
methods with the Zeo++ code.31,32 As is typical, we used the
largest cavity diameter (LCD) and the PLD, as well as their
difference. The PLD was found to be a very important feature
for the description of diffusion, as shown by an in-depth
correlation analysis of the PLD and energy barrier.

We then added general (and easily accessible) data on the
structure, such as the framework mass Mf and density ρf. These
descriptors are useful as a primary description of the structures
but are rarely what makes a difference in the ML model. Other
standard geometrical descriptors such as the surface area (SA)
and the void fraction (VF) or porosity were also considered.
Finally, information about the dimensionality of the nano-
porous channels of the materials was also found to be
beneficial for the accuracy of the model and the diffusion
process, and therefore, it was also included in the final list of
descriptors.

All descriptors are described in detail in Table 1 and were
used to train the supervised ML model presented in this article.
The model architecture chosen was an XGBoost33 framework,
similar to that previously used in our study of the
thermodynamics of Xe/Kr selectivity in nanoporous materi-
als,28 and the hyperparameters of the XGBoost model were
determined using a random search. The SHAP interpretation

tools were applied to better understand the underlying reasons
behind the performance of the final ML model.34

2.4. Interaction Energy Calculation Details. This study
focuses on xenon and its interaction with the materials of the
MOF family. The interatomic interactions were modeled by
using Lennard-Jones potentials. The MOF atoms were
described using the UFF force field,35 whereas the Lennard-
Jones parameters of xenon, taken from ref 36, were εXe = 221.0
K and σXe = 4.100 Å. To determine cross-interaction
parameters between xenon and all MOF atoms, we used the
Lorentz−Berthelot combination rules.37 No Coulombic
interactions were considered in this force field.

3. RESULTS AND DISCUSSION
3.1. Analysis of the Diffusion Coefficient Values. We

first analyzed the values of the diffusion coefficient computed
for all 5125 structures with converged MSD data and a
satisfactory linear fit. Because of the large range of variation of
the diffusion coefficient D, we focus in the following on its
base-10 logarithm, log10(D). In order to obtain a good physical
understanding of the process at the microscopic scale, we
studied the correlation between log10(D) and the geometric
descriptors of the materials. After carrying out a thorough
analysis for all 12 descriptors listed in Table 1, whose results
are reported in the Supporting Information, we identified the
two descriptors with the strongest correlation to the diffusion
coefficient: the PLD and the energy barrier (or diffusion
activation energy). We also show in Figure S1 the distribution
of values of the PLD and energy barrier across the structure
retained for model training.

As shown in Figure 2a, the activation energy is correlated to
the diffusion coefficient for xenon in MOF nanopores. A
stronger correlation is observed for points with a PLD around
4.5 Å, while for PLD values exceeding 6 Å, the correlation
appears to be weaker compared to that for smaller PLD values,
as illustrated in Figure 2b. This correlation between the energy
barrier and diffusion coefficient is confirmed in a different
visualization in Figure 3. The points are labeled according to
the energy barrier value in a given material, and the highest
energy barrier points tend to be concentrated among lower
diffusion coefficient values. However, a few points with very
high energy barriers are also observed for diffusion coefficients
that are quite low.

We see from the different representations that while both
PLD and barrier energy play an important role in the diffusion
coefficient, they are also complementary: the information
obtained through energy calculations strengthens our
comprehension of the correlation compared to a purely
geometric description. Indeed, PLD values cannot distinguish
between structures of over 6 Å in the “plateau” region of the
diffusion/PLD graph. While a geometric analysis would
interpret the different values of the diffusion coefficient as
statistical noise, Figure 3 reveals that higher values of barrier
energies are typically associated with lower diffusion
coefficients, thereby explaining the variations in the diffusion
coefficient across materials within this plateau based on the
activation barrier values. Although the correlation is not
perfect, this barrier descriptor provides better insights into this
uncharted area of PLD values above 6 Å, which cannot be
explained by simple geometric considerations. The barrier
activation energy value sheds light on the chemical nature of
the diffusion barrier that must be overcome.
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Based on this microscopic understanding, we then decided
to combine standard geometrical descriptors with energy
barrier values to train an ML model, following the approach we
had previously used for high-throughput screening of
thermodynamics of Xe/Kr separation.28 We describe and
analyze this ML model in the next section, and show how it
can be used to evaluate the diffusion coefficient of xenon in
nanoporous materials, offering a significantly faster alternative
to MD simulations.

3.2. Machine Learning Model. The calculation of
diffusion coefficients through explicit molecular simulation is
an extremely time-consuming process and is further
complicated for high-throughput purposes by various chal-
lenges in the fitting of the trajectory (i.e., the MSD data). Out
of the 6525 structures initially considered for this work, over
1000 were not completely evaluated through MD simulations,

resulting in a success rate of approximately 75% for the direct
simulation approach�and this is mainly due to either
insufficient time for obtaining a useable MSD, or MSD data
corresponding to non-Brownian regimes. It could be possible
to use a larger time step than conventional for the MD
simulation in order to reduce the computational cost to attain
the diffusion regime but at the expense of accuracy; however,
such simulations still require a typical simulation time of a
couple of days per structure. On the other hand, the calculation
of energy barriers with an energy step of 0.1 kJ mol−1 has an
average time of 12 s, and the determination of geometric
descriptors through the Zeo++ software typically takes a few
minutes at most. The MD method is therefore several orders of
magnitude slower, even under highly optimistic hypotheses for
MD simulation parameters.

However, the relationships between the energy barrier, PLD,
and diffusion coefficient remain unclear�the relatively weak
correlation demonstrated in Figure 2a highlights the important
limitations of the Arrhenius law as a general and direct
relationship between the diffusion coefficient and energy
barrier. The aim of the ML model is to build upon this
observed correlation by introducing additional geometrical
descriptors and achieve accurate calculation of diffusion
coefficients while significantly reducing the time required for
predicting the diffusion coefficient of future selective materials.
The ML model was trained using 80% of the 4873 structures
that survived all different filters imposed. We employed a total
of 12 descriptors listed in Table 1 to build the model. The
selected hyperparameters for the XGBoost model are detailed
in Table 2.

With this parametrization, the ML model predicts the log10
of the diffusion coefficient (in units of cm2 s−1) with a root-
mean-square error (RMSE) of 0.26 on the test set and a mean
absolute error (MAE) of 0.18. This implies that the exponent
α is known with an accuracy of approximately ±0.2 when
expressing the diffusion coefficient as D = 10α. For comparison,
the previous ML model for thermodynamic selectivity predicts
the log10 of selectivity with an error of about 0.07. It is
important to note that the goal here is not to predict the exact

Figure 2. Scatterplots of the log10 of the diffusion coefficient (in cm2

s−1) as a function of the diffusion activation energy Ea in kJ mol−1.
Panel (a) for all structures and panel (b) for structures with a PLD
larger than 6 Å. For all structures, the Pearson correlation coefficient
is equal to r = −0.77, whereas for the restriction to structures with a
PLD below 6 Å, this correlation is stronger with a Pearson coefficient
of r = −0.85. For structures with a PLD above 6 Å, this coefficient
decreases to reach r = −0.74.

Figure 3. Scatterplot of the log10 of the diffusion coefficient (in cm2

s−1) as a function of the PLD values and labeled by the barrier
activation energy. The higher barriers seem to correspond to lower
diffusion coefficients, thus echoing the correlation observed in Figure
2.
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values of the diffusion coefficient due to the inherent noise in
the values generated by the MD simulation (about 20% relative
error for KAXQIL). Instead, the objective is to determine the
order of magnitude of the diffusion coefficient. The proposed
model achieves this objective effectively, as illustrated in Figure
4a, where the predicted diffusion coefficient aligns closely with
the true values when represented on a log scale.

The training curve (Figure 4b) was examined to assess
whether the model had sufficient training data or required
additional data. As the amount of training data increased, the
error converged to 0.25, indicating that no further data were
necessary for training the model, given the descriptors available
and the complexity of the model being fixed. However, it is
conceivable to train a similar model using fewer data (50%
instead of 80% of the total data could probably suffice to train
a similar model). Furthermore, to prove that this good
accuracy does not correspond to a fortuitous random train/test
split, a cross-validation evaluation was performed on the whole
data set using a fivefold cross-validation scheme. The average
error (RMSE) on the five validation sets equals 0.26 with a
standard deviation of 0.01, which is very similar to the one
obtained with the specific train/test split we obtained here.

3.3. Interpretation of the ML Model. In order to get
more insights into the impact of the materials’ features on the
diffusion coefficient, we then interpreted the ML model using
the SHAP algorithms. The values of feature importance,
determined using the average of the absolute Shapley values for
each feature, are shown in Figure 5. As expected, the most
important features are found to be the PLD and the barrier
activation energy, as demonstrated in the previous section. The
VF also appeared to play a non-negligible role.

To unravel the relationship between these features and the
target diffusion coefficient, partial dependence plots (PDPs)
were examined for the features shown in Figure 6. The PLD
has a contribution similar to that described in Figure 3. A
linear contribution was observed when the PLD values were
below 6 Å, followed by a constant contribution for PLD values
above this threshold. The activation energy showed a negative
correlation with the logarithm of the diffusion coefficient,
which explained the linear contribution observed in the
dependence plot.

The analysis of the model also reveals less obvious
contributions. Figure S5 indicates that no clear relationships
can be inferred between SAs, VFs, and the diffusion coefficient.
These factors played a more secondary role, slightly adjusting
the obtained values with contributions of the order of 0.2, as
shown in Figure 6. For instance, the model identifies a positive
relation between the VF and the contribution to the diffusion
coefficient, which aligns with the physical understanding that
lower VFs correspond to lower diffusion rates within the
material, assuming that other parameters are equal. Conversely,
larger SAs imply more interaction with the pore walls, which
slows down the diffusion of particles. Regarding the LCD, the
LCD−PLD difference, xenon adsorption enthalpy, frame-
work’s mass, and density, no clear contribution patterns were
observed. This may be attributed to the fact that the previous

Table 2. Hyperparameters of the XGBoost Model Trained
in This Work

parameter value

objective reg:squarederror
n_estimators 1500
max_depth 4
colsample_bytree 1
colsample_bylevel 0.75
subsample 0.75
alpha 0.6
lambda 1
learning_rate 0.04

Figure 4. (a) Comparison of the log10 of the diffusion coefficient predicted by an ML model and the true values. (b) RMSE on the same test set
(20% of all data) as a function of the fraction of the training set used to train smaller models. The error decreases as the amount of data increases
and seems to stabilize near 0.25.

The Journal of Physical Chemistry C pubs.acs.org/JPCC Article

https://doi.org/10.1021/acs.jpcc.4c00631
J. Phys. Chem. C 2024, 128, 6917−6926

6922

https://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.4c00631/suppl_file/jp4c00631_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00631?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00631?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00631?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.4c00631?fig=fig4&ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://doi.org/10.1021/acs.jpcc.4c00631?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


features account for a substantial portion of the contribution
due to the correlation between all these features.

Finally, we note that the final predicted values are only
marginally influenced by the channel dimension despite its
association with a clear physical phenomenon. This could be in
part explained by the fact that no clear statistical distinctions
can be drawn between the materials with different channel
dimensions (see Figures S3 and S4). For the model, the
behavior of diffusion coefficients varies slightly depending on
the dimensionality of the channel. Figure 6 illustrates that a 1D
channel has a lower diffusion coefficient when all other features
are similar. On the other hand, a 2D channel demonstrates a
higher contribution, which is further confirmed by the PDPs. A
3D channel exhibits an even higher diffusion coefficient. The
model can distinguish between different material types based
on their channel dimensionality.

4. CONCLUSIONS AND PERSPECTIVES
In this article, we have introduced different methods for
evaluating the transport properties of an adsorbate inside a
nanoporous material, through the guest species’ diffusion
coefficient. The most accurate method is direct molecular
simulation through MD: it requires considerable computa-
tional time and “meticulous attention” to achieve optimal
accuracy. In particular, careful selection of parameters in MD
simulations is essential to obtain relevant MSD data and allow
the accurate calculation of a diffusion coefficient through
fitting. We performed a high-throughput screening of diffusion
coefficient values for xenon in 4873 nanoporous materials from
the CoRE MOF 2019 database, allowing us to identify
materials with notable thermodynamic and kinetic separation
performance. This published database is a first of its kind, as
we are not aware of any published database of similar size for
molecular diffusion through nanoporous frameworks.

We have used these data as a baseline for testing other
methods, such as the calculation of diffusion activation energy
and the training of an ML model based on structural and
energetic descriptors. The final ML model demonstrates
promising performance, achieving an RMSE of only 0.25 on
the base-10 logarithm of the diffusion coefficient. This

indicates the ability to accurately assess the order of magnitude
of the diffusion properties. Such assessment can help identify
potential diffusion limitations in promising materials and
optimize this property to improve the performance of materials
for adsorption-based separations. Furthermore, the techniques
developed in this study as well as future developments can also
be applied to membrane separation processes.

The results obtained here provide the foundation for future
work. For instance, the effect of tortuosity on diffusion
coefficient values and relevant definitions for tortuosity remain
open questions. Unidimensional channels can be particularly
examined, where the frequency and magnitude of changes in
direction can be analyzed to quantify their occurrence.38

Another challenge could consist of measuring different
diffusion regimes, such as single-file diffusion characterized
by a square root time relation in the MSD.39 In this study,
materials with MSD relations other than linear were excluded
since only materials with high determination coefficients in the
linear fit were considered.

To expand beyond conventional studies, the diffusion
coefficient could be used to model breakthrough experiments,
which is the closest a laboratory experiment can get from the
industrial adsorption process. The recent development of the
RUPTURA software40 opens new perspectives in modeling.
For instance, the axial dispersion coefficient used in a
breakthrough model can be calculated using transport
properties, combined with thermodynamic data on the
adsorption process of xenon and krypton. This presents an
opportunity for experiment−theory comparison, fostering a
virtuous feedback loop to improve modeling and facilitate the
discovery of the best-performing materials.

The diffusion coefficients calculated by using the afore-
mentioned methodologies solely describe self-diffusion in an
infinitely diluted environment. To better describe transport
properties under industrial conditions, it will be necessary, in
the future, to study diffusion coefficients in a higher-loading
environment to account for host−host interactions. Further-
more, mixture simulations can be directly conducted to obtain
the so-called Onsager diffusion coefficients, which are based on
the Maxwell−Stefan diffusion equation rather than Fick’s
equation.41 The calculation of such quantities requires

Figure 5. Feature importance determined using the average of the absolute Shapley values for each feature based on every training data. An
influential feature would have a very high average absolute SHAP value. The features are detailed in Table 1.
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significant computational resources as MD simulations on
mixtures at relatively high loading must be run for a sufficiently
long duration to capture the diffusion regime. Therefore,
applying this approach to large-scale screening is impractical,
but some interesting materials can be tested to study the effects
of mixtures and loading on transport properties.

Finally, we note that the work performed here relies on the
“rigid host” approximation, which is an important limitation of
our current methodology. Indeed, many MOFs are known to
exhibit dynamic behavior, whether by local flexibility of their
organic linkers or through large-scale structural changes upon
external stimulation. Both types of flexibility can have a
significant impact on adsorption, on its thermodynamics as
well as on the transport properties of the guest molecules.42,43

While flexibility and its impact on adsorption can be studied on
a case-by-case basis, we do not believe that there is any reliable

methodology today that can systematically determine what
structures are flexible or rigid on the scale of thousands of
structures. Moreover, classical simulations of flexible frame-
works would require the use of “universal” or transferable force
fields for intramolecular interactions, whose accuracy will be
rather limited. We see this, for now, as a wide open and
challenging question�on which perhaps we can draw
inspiration from the recent methodologies to address the
question of high-throughput screening of thermal conductiv-
ity.44
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Data Availability Statement
Raw data are available online at https://github.com/
fxcoudert/citable-data, and the Grid Adsorption Energy
Sampling code is available at https://github.com/coudertlab/

Figure 6. SHAP dependence plot corresponds to the Shapley values as a function of the feature values for every structure. These SHAP plots show
the contribution of the features to the prediction given by the ML model. Each Shapley value depends not only on the value of the feature itself but
also on the other features. For this reason, the plots are labeled based on a relevant second feature. The PDPs of every feature in the diffusion
prediction model are presented here.
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GrAED and https://github.com/eren125/xe_kr_selectivity_
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