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Necessary and sufficient elastic stability conditions in various crystal systems
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While the Born elastic stability criteria are well known for cubic crystals, there is some confusion in the literature
about the form they should take for lower-symmetry crystal classes. Here we present closed form necessary and
sufficient conditions for elastic stability in all crystal classes, as a concise and pedagogical reference to stability
criteria in noncubic materials.
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I. INTRODUCTION

The fundamental understanding of the conditions of the
mechanical stability of unstressed crystalline structures dates
back to the seminal work of Born and coauthors in the 1940’s
[1], and was consolidated in his 1954 book [2]. This and
later textbooks [3–5] usually state the generic requirements
for the elastic stability of crystal lattices, and give simplified
equivalents of the generic conditions for some high-symmetry
crystal classes. In particular, in the case of cubic crystals, the
conditions of stability reduce to a very simple form:

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. (1)

The above equations for the cubic crystal system are well
known, and are often called the “Born stability criteria.” We
noticed, however, through a review of the recent literature
on the experimental measurements and first principles cal-
culations of elastic constants of solids, that there is a large
amount of confusion about the form that these conditions
should take for other crystal classes, including hexagonal,
tetragonal, rhombohedral, and orthorhombic classes. In more
than a few cases, incorrect generalizations of the cubic criteria
have been published [6–10]; this is particularly frequent for
orthorhombic crystals [11–17]. In other papers, the authors
rely on conditions that are necessary but not sufficient [18]. As
long as the diagonal elastic constants Cii are dominant, this
leads to wrong quantitative analyses, but does not change the
qualitative picture (whether or not a specific crystal is stable).
However, we identified at least one case where accounting
for the proper stability criteria did change the conclusions
drastically, meaning that a system (MOF-74 material with CH4

guest molecules) was identified as stable when it is not [10].
In this paper, we summarize the generic elastic stability con-

ditions for crystals, and present necessary and sufficient con-
ditions for each crystal class. We also detail the crystal classes
where no analytical necessary and sufficient conditions exist.

II. GENERAL ELASTIC STABILITY CONDITION

The elastic behaviors of a lattice are described by its matrix
of second-order elastic constants,

Cij = 1

V0

(
∂2E

∂εi∂εj

)
, (2)
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where E is the energy of the crystal, V0 its equilibrium volume,
and ε denotes a strain [19]. This elastic matrix (also called
the stiffness matrix) has size 6 × 6 and is symmetric: It is
thus composed of 21 independent components. The crystal
class of the material considered yields additional symmetry
constraints, further reducing the number of independent elastic
constants. For arbitrary homogeneous deformation by an
infinitesimal strain, the energy of the crystal is therefore given
by the following quadratic form:

E = E0 + 1

2
V0

6∑
i,j=1

Cij εiεj + O(ε3). (3)

A crystalline structure is stable, in the absence of external
load and in the harmonic approximation [20], if and only
if (i) all its phonon modes have positive frequencies for
all wave vectors (dynamical stability), and (ii) the elastic
energy, given by the quadratic form of Eq. (3), is always
positive (E > 0, ∀ε �= 0). This latter condition is called the
elastic stability criterion. As first noted by Born [1], it is
mathematically equivalent to the following necessary and
sufficient stability conditions:

(1) The matrix C is definite positive;
(2) all eigenvalues of C are positive;
(3) all the leading principal minors of C (determinants of

its upper-left k by k submatrix, 1 � k � 6) are positive, a
property known as Sylvester’s criterion; and

(4) an arbitrary set of minors of C are all positive. It can
be useful to choose, for example, the trailing minors, or any
other set.

These are four possible formulations of the generic Born
elastic stability conditions for an unstressed crystal. They are
valid regardless of the symmetry of the crystal studied, and are
not linear.

Finally, from these conditions we can deduce some neces-
sary but not sufficient conditions. Fedorov [4], in particular,
noted that the condition on principal minors implies that all
diagonal elements are positive (Cii > 0, ∀i), but this alone is
not strong enough to ensure stability. Another example of a
necessary condition is

(Cij )2 < CiiCjj ∀i,j. (4)

III. EXPRESSIONS FOR SPECIFIC LAUE CLASSES

We now turn our attention to express closed form expres-
sions of the necessary and sufficient elastic stability conditions
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FÉLIX MOUHAT AND FRANÇOIS-XAVIER COUDERT PHYSICAL REVIEW B 90, 224104 (2014)

TABLE I. Laue groups and number of independent second-order
elastic constants Cij . We follow the naming convention of Wallace
[5] (I/II) to distinguish Laue classes within the same crystal system.

Crystal system Laue class Point groups Cij ’s

Triclinic 1̄ 1, 1̄ 21
Monoclinic 2/m 2, m, 2/m 13
Orthorhombic mmm 222, 2mm, mmm 9
Tetragonal (II) 4/m 4, 4̄, 4/m 7
Tetragonal (I) 4/mmm 4mm, 422, 4̄2m, 4/mmm 6
Rhombohedral (II) 3̄ 3, 3̄ 7
Rhombohedral (I) 3̄m 32, 3m, 3̄m 6
Hexagonal (II) 6/m 6, 6̄, 6/m 5
Hexagonal (I) 6/mmm 6mm, 622, 6̄2m, 6/mmm 5
Cubic (II) m3̄ 23, m3̄ 3
Cubic (I) m3̄m 432, 4̄3m, m3̄m 3

for 11 Laue classes, as described in Table I. For each class, the
table also gives the number of independent elastic constants in
the stiffness matrix. We focus here on the crystalline systems
in three dimensions, but this analysis can also be extended
in very similar terms to other dimensions (e.g., one- and
two-dimensional quasicrystals) [21,22].

For each crystal system and Laue class, closed form
expressions of the necessary and sufficient elastic stability
conditions can be found following a number of different
approaches. The one we have chosen is to develop the series
of minors of the stiffness matrix, in an order chosen to
minimize the degree of the polynomials involved. For this, one
reorders the matrix into block diagonal form and expresses
the minors starting with the smallest blocks. Another way
to view this approach is to express the quadratic form of
the energy and reduce it by successively “completing the
square” in the variables, taken in a sequence appropriate
to the symmetries [23,24]. This is formally equivalent and
gives identical expressions for the conditions. Finally, we
also checked the results presented below by means of direct
calculation with computer algebra software [25], expanding
the characteristic polynomial of the stiffness matrix in each
case, and factoring it.

A. Cubic crystal system

The cubic crystal system has the simplest form of elastic
matrix, with only three independent constants, C11, C12, and
C44:

Ccubic =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12

. C11 C12

. . C11

C44

C44

C44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(5)

(in this notation, dots are used to indicate nonzero elements
constrained by the symmetric nature of the matrix). The three
Born stability criteria for the cubic system are well known:

C11 − C12 > 0, C11 + 2C12 > 0, C44 > 0. (6)

They are necessary and sufficient. Here we merely note that
the first two conditions imply that C11 > 0, so it does not need
to be noted as an extra condition, as is sometimes done. Also,
the first condition can be equivalently stated as C11 > |C12|.

B. Hexagonal and tetragonal classes

Both Laue classes of the hexagonal crystal system, as well
as the tetragonal (I) class (4/mmm), have the same form for
the elastic matrix:

Chexa/tetra I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13

. C11 C13

. . C33

C44

C44

C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Crystals of the tetragonal (I) class thus have six independent
elastic constants, while those with a hexagonal crystal system
have only five, due to the added relation

C66 = (C11 − C12)/2. (8)

By direct calculation of the eigenvalues of the stiffness
matrix above, one can derive the following four necessary and
sufficient conditions for elastic stability in the hexagonal and
tetragonal (I) case:

C11 > |C12|, 2C2
13 < C33(C11 + C12),

(9)
C44 > 0, C66 > 0

(where the condition on C66 is redundant with the first one, for
the hexagonal case).

The tetragonal (II) class (4/m) features an extra elastic
constant, C16, bringing the total of independent Cij ’s to seven:

C tetra II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C16

. C11 C13 −C16

. . C33

C44

C44

. . C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The conditions for this are the same as for the tetragonal (I)
class, Eq. (9), with the exception of the condition on C66

being replaced by 2C2
16 < C66(C11 − C12). Thus the complete

necessary and sufficient Born stability criteria for tetragonal
(II) class are

C11 > |C12|, 2C2
13 < C33(C11 + C12),

(11)
C44 > 0, 2C2

16 < C66(C11 − C12).

224104-2



NECESSARY AND SUFFICIENT ELASTIC STABILITY . . . PHYSICAL REVIEW B 90, 224104 (2014)

C. Rhombohedral classes

Crystals in the rhombohedral (I) class (Laue class 3m)
feature six independent elastic constants,

C rhombo I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14

. C11 C13 −C14

. . C33

. . C44

C44 C14

. C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(12)

where, as in the hexagonal case, C66 = (C11 − C12)/2. We
therefore obtain the following four necessary and sufficient
conditions:

C11 > |C12|, C44 > 0,

C2
13 < 1

2C33(C11 + C12), (13)

C2
14 < 1

2C44(C11 − C12) ≡ C44C66.

For the rhombohedral (II) class, there is one more indepen-
dent elastic constant, namely, C15:

C rhombo II =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13 C14 C15

. C11 C13 −C14 −C15

. . C33

. . C44 −C15

. . C44 C14

. . C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(14)

The resolution leads to a case similar to the rhombohedral (I)
class, but with a stricter version of the last criterion:

C11 > |C12|, C44 > 0,

C2
13 < 1

2C33(C11 + C12), (15)

C2
14 + C2

15 < 1
2C44(C11 − C12) ≡ C44C66.

The criteria presented in Eq. (15) are rigorously necessary and
sufficient.

D. Orthorhombic systems

Finally, we come to the crystal systems with lower symme-
try and a larger number of independent elastic constants. The
stiffness matrix for an orthorhombic crystal has the following
form, with nine constants and no relationships between them:

Cortho =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11 C12 C13

. C22 C23

. . C33

C44

C55

C66

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (16)

There are three trivial eigenvalues for this matrix, namely, C44,
C55, and C66, all of which need to be positive. However, the
eigenvalues of the upper-left 3 × 3 block do not have a closed

form expression. They are the three roots of the following
cubic polynomial:

λ3 − λ2(C11 + C22 + C33)

+ λ
(
C11C22 + C11C33 + C22C33 − C2

12 − C2
23 − C2

13

)
+C11C

2
23 + C22C

2
13 + C33C

2
12

−C11C22C33 − 2C12C13C23. (17)

One can, however, find a closed form expression equivalent
to the generic criteria, through the requirement that leading
principal minors be positive. This reduces to the following
necessary and sufficient Born criteria for an orthorhombic
system:

C11 > 0, C11C22 > C2
12,

C11C22C33 + 2C12C13C23 − C11C
2
23 − C22C

2
13 − C33C

2
12 > 0,

C44 > 0, C55 > 0, C66 > 0. (18)

The conditions obtained are not all linear, but polynomial func-
tions of the elastic constants (because the largest nondiagonal
block in the stiffness matrix has size 3 × 3 and all coefficients
are independent).

We feel it is important to note here that some authors
have presented in the literature simpler stability conditions
for orthorhombic crystals, many of them linear [6,11,12]. To
quote only one, Wu et al. [6] claim that “it is known that for
orthorhombic crystals, the mechanical stability requires the
elastic stiffness constants satisfying the following conditions”:

Cii > 0, Cii + Cjj − 2Cij > 0,
(19)

C11 + C22 + C33 + 2(C12 + C13 + C23) > 0.

These conditions seem to be a natural extension of the
well-known cubic case, but they are incorrect. Indeed, it is
easy to verify formally, with CAS (Computer Algebra System)
software, that these conditions are necessary but not sufficient
[26].

E. Monoclinic and triclinic systems

Monoclinic and triclinic crystal systems have 13 and 21
independent elastic constants, respectively. Given the com-
plexity of the equations obtained, we will not show those here.
When studying such low-symmetry crystals, it is usually more
convenient to keep the stiffness coefficients in matrix form. In
particular, the generic necessary and sufficient criterion that
all eigenvalues of C be positive is easy to check with simple
linear algebra routines.

If, nevertheless, one wishes to obtain closed form expres-
sions for the stability conditions of monoclinic and triclinic
systems, they can be obtained as six polynomials in the elastic
constants by writing out that the leading principal minors of C
be positive. For monoclinic systems, the polynomials will be
of degree 4 (at most), while for triclinic crystals they will be
of degree 6 (at most). Simpler forms, including fully linear or
quadratic, that have sometimes been proposed in the literature
[6], are incorrect.
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IV. CONCLUSION

Here we gathered closed form expressions for necessary
and sufficient elastic stability criteria (also called Born stability
conditions) depending on the Laue classes of crystals. While
high-symmetry crystal systems allow for simple formulas,
these cannot be generalized trivially to lower-symmetry
systems. In particular, the cubic system is the only one for
which these conditions are all linear. Hexagonal, tetragonal,
and rhombohedral systems have quadratic stability criteria.
Conditions for orthorhombic crystals involve cubic polynomi-
als, while monoclinic and triclinic systems can be expressed
as quartic and sextic polynomials, respectively.

Finally, we note that the conditions of elastic stability
described here for an unstressed system can be readily

generalized to systems under an arbitrary external load σ by
introducing an elastic stiffness tensor B under load, defined as
(in tensorial notation) [20,27]

Bijkl = Cijkl + 1
2 (δikσjl + δjkσil

+ δilσjk + δjlσik − 2δklσij ). (20)

The resulting symmetry of the B tensor might be lower than
that of C, if the load is not isotropic. Elastic stability conditions
can then be derived, as a function of crystal system and
symmetry of the external load, by applying the formalism
of this paper [28].
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