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ABSTRACT: Adsorption-based techniques for gas separation using
nanoporous materials are widely used and hold a promising future, but
systematic identification of the best-performing materials for a given
application is still an open problem. For that task, we need to estimate
selectivity at different operating conditions (temperature and pressure)
on a large set of nanoporous structures. To this aim, we have developed
a machine-learning-assisted screening process based on a fast grid
calculation of interaction energies, in addition to newly designed
geometrical descriptors to predict ambient-pressure selectivity. As a
proof of concept, we tested our methodology for the separation of a
20:80 xenon/krypton mixture at 298 K and 1 atm in the nanoporous
materials of the CoRE MOF 2019 database. Based on a train/test split
of the data set, our model is promising with an RMSE of 2.5 on the ambient-pressure selectivity values of the test set and 0.06 on the
log10 of the selectivity. This method can thence be used to preselect the best performing materials for a more thorough investigation.

1. INTRODUCTION
Gas separation and purification are essential processes because
they provide key reactants and inert gases for the chemical
industry as well as medical or food grade gases. Among them,
there are easily extractable or synthesizable molecules, such as
nitrogen, oxygen, carbon dioxide, noble gases, hydrogen,
methane, or nitrous oxide. Moreover, gas separation is crucial
in mitigating negative environmental impact at the end of
industrial processes, such as facilities emitting greenhouse
gases (e.g., concrete or steel plants) or treatment plants for
radioactive off-gases like 85Kr. Cryogenic liquefaction or
distillation is currently the mainstream technique to achieve
industrial gas separation, while adsorbent beds made of
nanoporous materials (activated alumina or zeolites) are
mostly used as a less energy-intensive prepurification system.1

A wider use of nanoporous materials could reduce the
energy consumption of current separation processes because
adsorption is way less energy intensive than liquefaction.2 For
instance, some prototypes involving beds of nanoporous
materials have been developed for xenon/krypton separation
to avoid employing cryogenic distillation.3 For the process to
be viable, materials need to perform even better, and many
studies focus on synthesizing ever more selective materials by
leveraging all chemical intuitions around noble gas adsorption
properties.4−6 In order to speed the discovery process of novel
materials with key properties, computational screening can
identify factors explaining the performance and preselect
candidates for further experimental studies. As recently
conceptualized by Lyu et al., a synergistic workflow combining
computational discovery and experimental validation can push

material discovery to the next stage.7,8 But to efficiently guide
experimental discoveries, computational chemists are facing
two major challenges: generating reliably more structures and
evaluating them with fast and accurate models.

The number of nanoporous materials is potentially
unlimited; for the metal−organic frameworks (MOFs) alone,
over 90 000 structures have been synthesized9 and 500 000
computationally constructed.10−12 This ever-increasing num-
ber of structures requires more efficient screening procedures
as well as faster evaluation tools. To go beyond the time-
consuming calculations over the whole data set, computational
chemists developed funnel-like screening procedures to reduce
the need for expensive simulations and introduced machine
learning (ML) models.13 To further improve the selectivity
screening for Xe/Kr separation, research needs to focus on
designing better performing structural and energy-based
descriptors.

Simon et al. published one of the first articles on an ML-
assisted screening approach for the separation of a Xe/Kr
mixture extracted from the atmosphere.14 Their model’s
performance was highly relying on the Voronoi energy, i.e.,
an average of the interaction energies of a xenon atom at each
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Voronoi node.15 To rationalize this increase in performance,
this Voronoi energy can be regarded as a faster proxy for
adsorption enthalpy. This Voronoi sampling was much faster
than a standard Widom insertion but also much less accurate.
Therefore, we recently developed a more effective alter-
native�a surface sampling algorithm (RAESS) using symme-
try and nonaccessible volumes blocking to speed up the
calculation of relevant interaction energies within a porous
framework.16 Recently, Shi et al. used an energy grid to
generate energy histograms as a descriptor for their ML model,
providing an exhaustive description of the infinitely diluted
adsorption energies.17

All the approaches described above can accurately predict
the low-pressure adsorption (i.e., in the limit of zero loading)
but are not suitable for prediction of adsorption in the high-
pressure regime, when the material is near saturation uptake.
While this latter task is routinely performed by grand canonical
Monte Carlo (GCMC) simulations, there is a lack of methods
at lower computational cost for high-throughput screening. To
better frame our challenge, in this work we are essentially
trying to predict the selectivity in the nanopores of a material
at high pressure, where adsorbates are interacting with each
other while only having information on the interaction at
infinite dilution. The comparison between the low- and high-
pressure cases provides clarification on the origin of the
differences in selectivity values. For some materials, selectivity
could drop when the pressure is increased in the Xe/Kr
separation application. And, this was mainly attributed to the
presence of different pore sizes and potential reorganizations
due to adsorbate−adsorbate interactions.18

In this paper, we develop a new adsorption energy sampling
technique using a grid-based approach. Moreover, we perform
a statistical characterization of the pore size and energy
distributions to inform the model of a potential selectivity
drop. By combining these two approaches, we introduce a set
of useful ML descriptors for fast and accurate ambient-pressure
selectivity prediction, and we highlight its performance in the
case of xenon/krypton separation for the CoRE MOF 2019
database.19

2. METHODS
2.1. Machine Learning Model. We chose the eXtreme Gradient

Boosting (XGBoost) algorithm as the machine learning model
architecture due to its accuracy, efficiency, and simplicity of use. Its
performance has been extensively demonstrated, as evidenced by 17
out of 29 winning solutions in the Kaggle Challenges being based on
this algorithm in 2015. The XGBoost system is highly scalable and
parallelized, resulting in fast model training.20 Compared to more
conventional tree-based algorithms like random forest (commonly
used in the field14), the boosting component of the algorithm enables
learning from previous mistakes and allocating greater effort to
problematic data points, thereby improving the accuracy of the final
ML model.

In the following sections, we introduce new descriptors for
nanoporous materials along with novel concepts of feature engineer-
ing based on energy and pore size histograms. We select the ML
features through progressive filtering, eliminating less influential
features based on the performance on the training set. The complete
list can be found in Tables S1−S3. We will define the influence or
importance of these features in a section dedicated to model
interpretation. We also fine-tune the hyperparameters of the model
through random searches to design the best-performing final model.
Lastly, we use a unified approach to interpret the influence of the
preselected descriptors on the final model.

2.2. Target Variable. This study aims at building an ML model to
predict the Xe/Kr ambient-pressure selectivity faster than standard
techniques. To obtain reference values (ground truth in this study),
we use the RASPA2 software21 to run GCMC calculations of 20:80
Xe/Kr mixtures at 298 K and 1 atm on our cleaned database. The van
der Waals interactions are described by a Lennard-Jones (LJ)
potential with a cutoff distance of 12 Å. The LJ parameters of the
framework atoms are given by the universal force field (UFF),22 and
the guest atoms (xenon and krypton) have their LJ parameters taken
from a previous screening study.23 The study only focuses on a given
Xe/Kr composition usually obtained by cryogenic distillation of
ambient air1 as a first step toward predicting other mixtures at
different physical conditions (e.g., Xe/Kr mixtures out of nuclear off-
gases).

To achieve this, we consider a logarithmic transform of the
selectivity instead of the raw value because the goal is rather to predict
the order of magnitude of the selectivity values than to directly predict
the higher values of selectivity�an ML model that focuses its
prediction on raw selectivity values can reach lower errors by simply
focusing on the higher values than the lower ones. The use of a
logarithmic transform better separates the different selectivity
categories through the different orders of magnitude of the selectivity
values. This approach distributes more evenly the efforts on the whole
spectrum of selectivity values. Moreover, this logarithmic trans-
formation is effectively an exchange Gibbs free energy (defined later
in eq 1), so that we can easily compare it with the energy descriptors
introduced in this article.

2.3. Database and Data Generation. We test this methodology
on a set of realistic MOFs by considering the 12 020 all-solvent
removed (ASR) structures of the CoRE MOF 2019 database.19 After
removing the disordered and the non-MOF structures as well as the
ones with a large unit cell volume of 20 nm,3 the database is reduced
to a set of 9748 structures. Then, with the string information given by
the Zeo++ software,24 this number is reduced to 9177 by removing
the structures that are not tridimensional, where solvents are still
detected (wrongly classified in “all solvent removed”) or where the
metal is radioactive or fissile (e.g., Pu-MOF TAGCIP,25 Np-MOF
KASHUK,26 U-MOF ABETAE27 or Th-MOF ASAMUE28), which is
a source of risks in a nuclear waste processing plant. Furthermore, the
structures with pore sizes allowing the adsorption of xenon are
selected using a condition on the largest cavity diameter (LCD): this
is the case for 8529 structures with an LCD higher than 4 Å
(approximately the size of a xenon molecule). This is equivalent to
removing the structures with very unfavorable adsorption enthalpies,
which are not promising for our adsorption-based separation.

Then, we calculate the descriptors summarized below (and fully
detailed in the Supporting Information) on this restrained data set. At
this stage, 140 structures fail in the GCMC calculation due to RAM
limitations, and 83 have no standard deviation for the pore
distribution (skewness and kurtosis cannot be retrieved). In the
following training−testing process, we will therefore use a final data
set of 8300 structures used to perform our ML-assisted method of
screening the Xe/Kr adsorption selectivity. Based on this final set, the
model is trained on 80% of randomly selected structures (6640
structures) and tested on the remaining structures (1660 structures).
However, Jablonka et al. have recently criticized the standard train-
test split (as used in this study) because of the multiple occurrences of
similar structures in the data. Therefore, we also compare the results
obtained by the GroupShuffleSplit function of sklearn. In this grouped
split, similar structures labeled using the chemical formula of the
MOFs are always grouped in either the training or the test set, hence
avoiding the aforementioned problem. Doing so, we did not notice
any significant alteration of the generalization error, which we
attribute to the high number and the diversity of the structures with
which we are dealing with. The goal is to learn from the training set a
relationship between the descriptors and the target ambient-pressure
selectivity in order to evaluate the performance on the test set. A CSV
file of training and test sets can be found in the data availability
section.

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.3c01031
Chem. Mater. 2023, 35, 6771−6781

6772

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c01031/suppl_file/cm3c01031_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.3c01031/suppl_file/cm3c01031_si_001.pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.3c01031?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


2.4. Geometrical and Chemical ML Descriptors. Examining a
number of research papers on supervised ML for the prediction of
adsorption properties,14,29−32 we identify a few recurrent descriptors:
(i) geometrical descriptors obtained using software like Zeo++24

including surface area (SA), void fraction (VF), largest cavity
diameter (LCD), and pore limiting diameter (PLD) and (ii) physical
and chemical descriptors such as framework density, framework molar
mass, percentage of carbon (C%), nitrogen (N%), oxygen (O%), and
hydrogen (H%), as well as halogen, nonmetals, metalloids, and
metals, and degree of unsaturation. Although these descriptors are
versatile and widely used in ML models, they fail to provide specific
information for the ML task of this study. As demonstrated by Simon
et al., energy descriptors greatly influence ML models for selectivity
prediction.

The geometric analysis of crystalline porous materials is typically
based on the predefined van der Waals (vdW) radii from the
Cambridge Crystallographic Data Centre (CCDC). This force-field-
independent definition can create a gap between geometrical
descriptors and thermodynamic values obtained through molecular
simulations. Inspired by a recent work comparing PLDs and self-
diffusion coefficients,33 we define a list of vdW radii to be read by the
Zeo++ software (more details can be found at github.com/eren125/
zeopp_radtable). In this study, all Zeo++ calculations utilize an
atomic radius that corresponds to the distance at which the LJ
potential reaches 3kBT/2 at T = 298 K.

We test several values of the surface area exposed to different probe
sizes (1.2, 1.8, and 2.0 Å). The probe occupiable volume is chosen to
measure the void fraction (VF) for different adsorbents by using
probe sizes of 1.8 Å (close to the radius of krypton) and 2.0 Å (close
to that of xenon). This definition of pore volume demonstrates a
better agreement with experimental nitrogen isotherms.34

Given the objective of predicting the difference between low-
pressure selectivity and ambient-pressure selectivity (for a specific gas
mixture composition), some descriptors hold little importance, and
the key factor lies in the difference in accessible volume and affinity of
the remaining pore volume with xenon compared to krypton. The
intuition developed in the previous study outlines the role of a diverse
distribution of pores with different xenon affinities.18 We tested
different combinations of geometrical descriptors (along with the
following energy and pore size distribution descriptors) using a cross-
validation scheme on the training data. Using these accuracy results,
from all the “standard” descriptors mentioned in the literature, the
following seven descriptors are retained: C%, N%, O%, LCD
(“D_i_vdw_uff298”), PLD (“D_f_vdw_uff298”), SA for a 1.2 Å
probe (“ASA_m2/cm3_1.2”), and VF for a 2.0 Å probe
(“PO_VF_2.0”). Additionally, we introduce a new descriptor, ΔVF,
to represent the difference in void fraction values, specifically the
difference in volumes occupiable by xenon (2.0 Å) and krypton (1.8
Å). A comprehensive presentation of all these descriptors, including
other geometrical descriptors based on pore size distribution, can be
found in Table S1.

2.5. Pore Size Distribution. We use Monte Carlo steps to
measure the frequency of every accessible pore sizes binned by 0.1 Å
and to generate a histogram of pore sizes (or pore size distribution,
PSD).35 This histogram then generates descriptors based on statistical
parameters describing the overall location, the dispersion, the shape,
and the modality of the distribution. In addition to the mean and
standard deviation of the distribution, we introduce two additional
moments: the skewness (γ), corresponding to the third standardized
moment, measures the asymmetry of a distribution, and the kurtosis
(k), being the fourth standardized moment, measures the relative
weight of the distribution’s tails. Recognizing the importance of
characterizing the number of different pore sizes that are likely to have
contributed to the observed selectivity drop, we try to find a simple
descriptor for measuring the number of modes in the distribution.
The Sarle’s bimodality coefficient, BC = (γ2 + 1)/k, provides a simple
quantification of the extent to which the distribution deviates from
unimodality by considering only skewness and kurtosis.36

Finally, to assess the diversity of pores, we introduce an effective
number neff = N2/∑ni2 of pore sizes, where N represents the total

number of points in the histogram and ni is the number of points
associated with the ith bin. This number bears resemblance to a
statistical measure widely used in other scientific domains. In political
science, it is used to measure the effective number of political
parties,37 while in ecology, the inverse Simpson’s index evaluates the
species diversity in an ecosystem.38 Similarly, in quantum physics, the
inverse participation number measures the degree of localization of a
wave function.39 In our case, this effective number of pore sizes gives
an idea of the diversity of pore sizes (considering a binning of 0.1 Å).
A large effective number suggests that multiple pore sizes are well
represented in the structure. Thus, this descriptor provides insight
into the scattering of the pore sizes within the distribution.

All of these descriptors contain valuable information regarding the
form of the PSD required to understand the loading and selectivity
situation in the framework near saturation uptake, which is crucial to
predict the ambient-pressure selectivity.

2.6. Energy-Based Descriptors. 2.6.1. Grid Calculation.
Inspired by our recent work on a faster way of calculating the low-
pressure adsorption enthalpy and Henry’s constant,16 we propose
another approach based on symmetry-respecting grids. We generate
these grids using the Gemmi project’s C++ library,40 using an
algorithm implemented with the following steps.

First, we loop over the framework atoms and the grid points around
a sphere of radius 0.8 × σg−h, where σg−h is the distance at which the
LJ potential energy between the guest atom g and the host atom h is
zero. Then, the LJ potential energy between the guest molecule and
the closest host atom is calculated, and only the grid points with an
energy lower than a predefined threshold (here set to 100 kJ mol−1)
are considered “unvisited” and will be recalculated in the following
loop; the others are considered blocked by the framework and will be
considered already “visited”. This first loop aims at filtering out the
grid points that are blocked by the framework, and we refer to this
preliminary filtering step as “blocking” in Table 1. Then, a second

loop over the “unvisited” grid points is performed�at each
increment, if the point is “unvisited”, we calculate the interaction
energy between the guest and all the host atoms within the cutoff;
then the symmetric images of this point are filled with the same
energy value and are considered “visited” by the algorithm.

This symmetry-aware grid exploration divides the time required by
the average number symmetry images�this module will be termed
“symmetry” in Table 1. By combining both the “blocking” of the high-
energy grid points and the “symmetry”-based calculation of the
interaction energies, we built a “fast” version of the grid calculation
algorithm that can compete with our previously developed rapid
surface sampling method (RAESS). We refer to this new sampling
technique as the GrAED algorithm in the following text.

To highlight the improvement in performance in this procedure:
the average void fraction for a 1.2 Å probe radius equals 0.16, and the

Table 1. Performance Comparison of the New Grid Method
to Other Standard Techniques Used to Calculate the Xenon
Adsorption Enthalpiesa

energy sampling method
average CPU

time (s)
RMSE on adsorption enthalpy

(kJ mol−1)

Grid−naive−0.12 Å 35.4 0.014
Grid−blocking−0.12 Å 10.4 0.014
Grid−symmetry−0.12 Å 8.3 0.014
Grid−fast−0.12 Å 4.8 0.014
Grid−fast−0.3 Å 0.13 0.21
RAESS16 0.34 0.33
Widom41 (12K cycles) 150 0.01
aThe RMSE is calculated by comparing the values given by a 100K-
step Widom insertion considered as the ground truth. The associated
calculations are performed on the structures with the LCDCCDC over
3.7 Å of CoRE MOF 2019 database with a single Intel Xeon Platinum
8168 core at 2.7 GHz.
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average number of symmetric images equals 5.8 on the CoRE MOF
2019 database (most MOFs present symmetry operations). On
average, the “blocking” procedure means that only 16% of the grid
points really need to be calculated. The “symmetry” reduces this
number of points to 17%, and the combination of both reduces it to
only 2.7% of the grid. This leads to a significant reduction in the CPU
time of the calculation, as shown in Table 1.

From the energy values of this grid, we can now calculate many
useful descriptors that are used in our final model. These energy-
based descriptors are calculated using the GrAED algorithm except for
the ambient-pressure case, which is handled using GCMC
simulations. A fully detailed description of these descriptors as well
as their labeling names is given in Table S2.
2.6.2. Single Component Thermodynamic Values. From these

host−guest interaction energies, we can calculate different thermody-
namic quantities corresponding to different statistical averaging. For
instance, the Henry’s constant KH corresponds to the average of the
Boltzmann factors RTexp( / )int , while the adsorption enthalpies
are the Boltzmann average of the interaction energies�all these
concepts have been used and summarized in our previous paper on
the surface sampling of energies to determine adsorption enthalpy and
Henry’s constant.16 The adsorption Gibbs free energy ΔadsG can then
be deduced from the Henry’s constant because the adsorption free
energy is G RT RTln( exp( / ) )ads int= , and finally the
adsorption entropy naturally derives from the Gibbs energy: ΔG =
ΔH − TΔS.
2.6.3. Exchange Equilibrium and Selectivity. The exchange

equilibrium corresponds to what occurs in the competitive adsorption
process between two adsorbate molecules of a mixture. Adsorption
sites are occupied by either adsorbate A or adsorbate B, leaving the
other in the gas phase. We model this equilibrium by the equation
A(ads) + B(gas) = A(gas) + B(ads), and the equilibrium constant
corresponds to the selectivity sA/B = (qAyB)/(qByA). The exchange
Gibbs free energy then simply derives from the selectivity:

G RT slnexc
A/B A/B= (1)

which is consistent with the relationship between selectivity and
Henry’s constant at low pressure. According to Hess’s law, the
exchange enthalpy is the difference between the adsorption enthalpies,
ΔexcHA/B = ΔadsHA − ΔadsHB. Finally, the entropic term −TS derives
from exchange equilibrium −TΔ excS = ΔexcG − ΔexcH. We use these
formulas to calculate the Gibbs free energy of the most influential
descriptor, the xenon/krypton exchange equilibrium at infinite
dilution ΔG0

Xe/Kr, and most of the energy descriptors presented in
Table S2.
2.6.4. Learning from Higher Temperature Thermodynamics. The

adsorption enthalpy of xenon at infinite dilution at 298 K is very
different from the adsorption enthalpy of xenon at ambient pressure
given by the GCMC calculations. However, when exploring the
behavior at higher temperature (such as 900 K), we can find a better
correlation with this xenon adsorption enthalpy as we can see in
Figure S1. The R2 coefficient of determination increases from 0.80 to
0.92, which indicates a better consideration of the ambient-pressure
enthalpy using a higher temperature averaging. For this reason, we use
this temperature to calculate the adsorption Gibbs free energy of
xenon and krypton and also the Xe/Kr exchange Gibbs free energy.
Then, we also compute differences between the 298 and 900 K
temperatures for the Xe/Kr exchange Gibbs free energies
ΔexcGXe/Kr(298 K) − ΔexcGXe/Kr(900 K), enthalpies, and entropies.
We add these differences as descriptors because they can inform the
model on the energy differences between the low- and ambient-
pressure cases which yields to better predictions.
2.6.5. Statistics on the Energy Distributions. Inspired by the

thermodynamic averaging, we introduce other statistical trans-
formations of the Boltzmann weighted energy distribution, such as
its standard deviation. To describe the multimodality of the energy
distribution, we also introduce the Boltzmann weighted skewness and
kurtosis; we can then deduce the Sarle’s bimodality coefficient of
Boltzmann weighted interaction energies. We can also retrieve

statistical measures from the grid values of interaction energy as
descriptors without weighing by Boltzmann factors to give a richer
description of the distribution. For instance, the model uses the mean
and standard deviation of this distribution calculated for xenon and
krypton.

2.7. Hyperparameter Fine-Tuning. The search for hyper-
parameter values aims at finding the best model to optimize the
generalization error. The most common strategy is to perform cross-
validations to evaluate different model configurations, known as
hyperparameter search or optimization. In this case, the randomized
search algorithm with 5-fold cross-validation is used to find the best
parameters within a predefined reasonable range. The Supporting
Information provides the range of hyperparameters explored by the
algorithm. After this search, we identify a set of optimal hyper-
parameters that give an average RMSE of 0.37 kJ mol−1, which defines
our final model. A convergence plot of the model performed using 5-
fold cross-validations is given in Figure S6. The hyperparameter
search is performed on the training set to avoid any data leakage in
the final model and ensure an accurate evaluation of the generalization
error of the model.

Given this configuration, we test the model on the test set and use
interpretation tools to better understand the structure−property
relationships in play.

2.8. Interpretation of the Final Model. We then trained the
final model on the predefined training set using XGBoost with the
fine-tuned hyperparameters. By testing it on the test set, we measure
the accuracy of our approach; however, it is interesting to extract
chemical insight into the hidden relationship between the predicted
value and the descriptors to apprehend the thermodynamic origins of
the performance. In this work, we use the Shapley values,42 a game
theory concept developed by Shapley in 1953, to measure the
contribution of each descriptor in the predicted value. We can
evaluate, locally on a nanoporous material, the contribution of each
descriptor to the prediction by using this tool. To draw structure−
property relationships, we would need to use a global interpretation
methods such as the SHapley Additive exPlanations (SHAP) method
thoroughly detailed in the online book Interpretable Machine Learning
by Christoph Molnar.43 The SHAP tool developed by Lundberg and
Lee44 is a faster algorithm adapted to tree-based ML models like
gradient boosting, TreeSHAP, which allows the calculation on large
databases and integrates useful global interpretation modules like
feature importance evaluation and dependence plot.

3. RESULTS AND DISCUSSION
This study presents a prediction of the exchange Gibbs free
energy at 1 bar and 298 K, which represents an energetic
interpretation of the ambient-pressure selectivity eq 1, using
geometrical, chemical, and energy descriptors presented in
Tables S1 and S2. The most correlated descriptor is the
exchange Gibbs free energy at infinite dilution and 298 K. We
will begin by studying the correlation between these two
quantities because the exchange energy calculated by the
GrAED algorithm already gives a very fast first evaluation of
the selectivity. As shown in a previous study,18 the difference of
values between the low- and ambient-pressure cases is mainly a
selectivity drop effect due to the near-saturation loading of
adsorbates in the nanoporous material. To improve the
accuracy of the evaluation, we trained a model that integrates
features that could help detect and quantify the selectivity drop
that affects some highly selective materials. The ML model
uses computationally cheaper descriptors to predict the
computationally expensive ambient-pressure selectivity. Finally,
we interpret the model to see how each feature contributed to
the improved prediction compared with the simple infinite-
dilution baseline.

3.1. From Infinite Dilution to Ambient Pressure. The
low-pressure selectivity provides a first intuition of the
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selectivity at higher pressure, as demonstrated in our previous
work showing a correlation between the selectivity at both
pressures.18 If we adopt the Gibbs free energy formalism (eq
1), which corresponds to a logarithmic transformation of the
selectivity values, Figure 1 confirms and highlights this

correlation. We can also note that although a majority of
structures have similar selectivity in both pressure conditions, a
handful of structures experience a selectivity drop at higher
pressure. The zero-loading selectivity is always higher or
similar to the ambient-pressure one; it gives therefore a solid
ground on which to build an efficient prediction model. On
top of this, in order to build a good prediction model, we need
to add explanatory descriptors related to this selectivity drop
phenomenon. One of the main causes to the selectivity drop is
the presence of bigger pores that are less attractive xenon;
therefore, additional information on the pore size distributions
or the energy landscape would be helpful for this task.

To incorporate information about the pore size diversity of
the materials, we carry out statistical measurements on the
PSD. By analyzing them, we detect explanatory factors at the
origin of the observed selectivity drop. A high degree of
multimodality in the distribution would mean a diverse set of
pores, which can lead to a selectivity drop if the pores are
significantly different from one from another. The more distant
the average pore size is from the largest cavity diameter, the
higher the chance of observing a selectivity drop because a big
difference between the pore sizes brings about a lower
selectivity. All of these statistics are designed to give as much
knowledge as possible on a hypothetical selectivity drop and
on the quantitative estimation of its magnitude.

The statistics on the distribution of interaction energies for
xenon and krypton calculated by our grid algorithm can help
quantify the change of selectivity. These statistics include
moments of different orders (up to 4) of the energy
distribution, which informs on the adsorbate−adsorbent

interaction energies in the nanopores at higher loading. The
shape of the energy distribution can help quantitatively assess
the change in selectivity. We can consider this as a way of
compressing the whole energy distribution into a few statistical
values, which is a standard method used in the field of data
science to tackle distribution data. We also apply the same
approach to the Boltzmann weighted distributions to generate
temperature-specific descriptors for the energy distributions.

By using different temperatures, we note that the infinite
dilution adsorption enthalpies at higher temperatures can be
better correlated to the adsorption enthalpy at ambient
pressure. The minimum error is found for the adsorption
enthalpy at 900 K, which gives an RMSE of 1.76 kJ mol−1

instead of 2.87 kJ mol−1 for the 298 K case. This new type of
descriptor is very interesting because it performs better around
the high selectivity region, where the standard Boltzmann
average at 298 K loses its accuracy (Figure S1). As shown in
Figure S7, the exchange free energy at 900 K and the excess of
free energy compared to the 298 K case are the second and
third most influential descriptors of our ML model. They are
complementary to the exchange free energy at 298 K to predict
selectivity values at higher pressures.

By combining the features mentioned above with more
standard geometrical descriptors, we train an ML model for the
ambient-pressure selectivity that identifies the origins of the
selectivity drop and gives promising prediction results.

3.2. ML Model Performance. In this section, we present
the performance of the ML model that learns the joint effects
of all of the newly introduced descriptors to detect and
evaluate the drop between the easily accessible low-pressure
selectivity and the more computationally demanding ambient-
pressure selectivity. A GCMC simulation of a 20:80 xenon/
krypton gas mixture takes on average 2400 s per structure on
the CoRE MOF 2019 database, while our grid-based
adsorption calculation only takes about 5 s per structure (on
a single Intel Xeon Platinum 8168 core at 2.7 GHz).
Computing all the necessary features for the prediction
would take less than a minute per structure, significantly faster
than the 40 min required for a GCMC calculation. The ML-
based approach clearly demonstrates a speed advantage over
standard molecular simulations. However, it needs to maintain
a high level of accuracy on an unseen set of structures to be a
good substitute to GCMC.

We perform a randomized search over a range of maximum
depths, learning rates, sizes of feature samples used by tree and
by level, sizes of data sample, and alpha regularization
parameters. And a set of hyperparameters minimizes the
average RMSE computed using a 5-fold cross-validation. The
ranges used in the randomized search as well as the final
hyperparameters set are given in the Supporting Information.
By using this parametrization, our XGBoost model has an
RMSE of 0.37 kJ mol−1 and an MAE of 0.22 kJ mol−1 on the
exchange Gibbs free energies of the test set containing 1660
structures, which corresponds to a good correlation as shown
in Figure 2.a If we convert back these results to the selectivity
values, the RMSE on the selectivity values would be 2.5 and
0.07 on the log10 of the selectivity, which means that the order
of magnitude of the selectivity is known with very good
accuracy. To prove that this good performance is not
fortuitous, we use a 5-fold cross-validation procedure on the
whole data set and found an average RMSE of 0.37 kJ mol−1

with a standard deviation of 0.01 kJ mol−1, which is consistent
with the performance given by the train/test split performed.

Figure 1. Comparison between the Gibbs free energy of exchange at
low pressure ΔG0 (calculated by the GrAED algorithm) and ambient-
pressure ΔG1 (calculated by GCMC) labeled by the relative distance
between them. This plot is equivalent to a logarithmic plot of the
selectivity values under these two pressure conditions. The RMSE
between these quantities is equal to 0.81 kJ mol−1 and the MAE 0.49
kJ mol−1.
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To see if it would be possible to train a better model with
more training data, we train different models with different
fractions of the training set, as shown in Figure 3. The RMSE

unsurprisingly decreases as we increase the amount of data, but
it seems to start stabilizing for a fraction of 95% of the training
set. This means that the model has a sufficient amount of
training data to achieve what seems to be the minimum error
on this test set, although it may still be improved if we had a
larger data set.

This method can later be used in a screening procedure that
relies on inexpensive descriptors to filter out obviously
undesirable structures, retaining only the promising structures
for final ML model evaluation. To achieve this, as previously

explained in the methods, only 3D MOF structures with an
LCD above 4 Å are retained, as they possess an affinity for
xenon, which is a necessary condition for good Xe/Kr
selectivity. Given the excellent predictive performance of the
model regarding the ambient-pressure selectivity in structures
with good xenon affinity, the proposed screening procedure,
illustrated Figure 4, would include (i) a check of the nature of
the structure to ensure it is a 3D MOF structure, (ii) then a
filter on the LCD value (above 4 Å), (iii) a pre-evaluation of
the Xe/Kr selectivity at infinite dilution using the grid-based
method, and (iv) finally the ML evaluation to keep only
structures above a certain threshold of ambient-pressure
selectivity (e.g., 30). We could eventually evaluate more
thoroughly the top structures using GCMC simulations, ab
initio calculations, or adsorption experiments.

3.3. Opening the Black Box. To understand the intuition
behind this selectivity drop, we use the SHAP43,44 library of
interpretation models to draw relationships between the
descriptors and the predicted ambient-pressure selectivity.
This code library is based on the calculation of Shapley
values42 that measure the contribution of each descriptor to
the prediction to locally interpret our ML model. In game
theory, the Shapley value is used to equally distribute a bounty
according to the contribution of each player in a collaborative
game. In machine learning, these values are used to break
down the predicted values into a set of contributions for every
feature (the sum of the contributions is equal to the predicted
value). This interpretation model untangles the interdepend-
ence between the descriptors to extract an individual
contribution.b

To go beyond the local interpretation, we can rapidly
compute the approximate Shapley values for the whole data set
using faster algorithms44 and then use all them to make a
global interpretation of the model. The global interpretation is
based on multiple Shapley values that can be aggregated using
an averaging or simply plotting them and looking at their
dependence to the feature value. If we plot the Shapley values
as a function of the feature values for each structure of the data
set, we can see the contribution value depending on the feature
value. This plot is called a SHAP dependence plot, which has a
role similar to that of the partial dependence plot usually used
for this purpose. Using the dependence plot, we can then infer,
with a certain level of uncertainty, the level of contribution to
the final predicted value of a feature, which highlights model-
related structure−property relationships. Finally, we can use
the mean absolute Shapley values of each feature on the
training set to measure the feature importance (see Figures S7
and S8). This mean value corresponds to the average
magnitude of the contribution to the predicted value, which
is a measure of the influence of the feature on the model
output.
3.3.1. Global Interpretability. To rank the descriptors

according to their average impact on the magnitude of the
model output, we can use the mean absolute Shapley values for
each descriptor. The importance plots associated with these
values are presented in Figure S8. Even if the low-selectivity
exchange Gibbs free energy has a SHAP importance value way
above the others, it only serves as a baseline describing the
materials without selectivity drops, as shown in Figure 1; the
other descriptors play a major role in moving the outliers of the
figure closer to the diagonal line. Energy descriptors play a
major role in the model’s prediction, and the geometry-based
new descriptors, while playing a more secondary role, are key

Figure 2. Scatter plot of the exchange free energy predicted by the
model. There is good agreement between the predicted and true
values. On the test set, there is an RMSE of 0.37 kJ mol−1 and an
MAE of 0.21 kJ mol−1. This plot is equivalent to the scatter plot
between the logarithm of the ambient-pressure selectivity values
(Figure S5). The corresponding errors for the ambient selectivity are
2.5 and 1.1 for respectively the RMSE and MAE of the selectivity and
0.065 and 0.038 for the RMSE and MAE of its log10.

Figure 3. Root mean-squared errors on the same test set (20% of all
data) as a function of the fraction of the training set used to train
smaller models. The error decreases as the amount of data increases.
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in evaluating the gaps between the low-pressure case with the
ambient-pressure one that we are interested in. To dig deeper
into the mechanisms that allow the model to predict the
selectivity with a very good accuracy�the RMSE and MAE on
the test set’s selectivity being respectively 2.5 and 1.1�we are
now going to look into the SHAP dependence plots of each
interesting descriptor that plots the contribution to the
predicted value as a function of the actual descriptor value.

The partial dependence module offered by the SHAP library
provides a comprehensive interpretation of the model.
Although, we can use other methods, such as partial
dependence plots, to compute dependence plots (e.g., partial
dependence plots),43 it is preferable to maintain a good level of
consistency between global and local interpretations by
utilizing the same underlying theory. The SHAP dependence
plots for all descriptors in Figures S9 and S10 exhibit distinct

forms, directions, and shapes, which bodes well for the
interpretability of the model. Valuable information regarding
how the ML model predicts ambient-pressure selectivity is
gleaned from the profiles of these dependence plots.

The most important descriptor is the exchange free energy
“G_0” associated with low-pressure selectivity. Its contribution
displays a very strong positive linear correlation (Figure 5).
This descriptor establishes a baseline, on top of which other
contributions either decrease the free energy (more selective)
or increase it (less selective). The model can be interpreted as
a combination of a baseline and smaller adjustments,
estimating the deviation magnitude from the ideal low dilution
case. For instance, the next two descriptors, “G_900 K” (900 K
low-pressure exchange free energy) and “G_Xe_900 K” (900 K
low-pressure xenon adsorption free energy), further contribute
to the baseline by providing information on low-pressure

Figure 4. An illustration of the screening procedure that could be used to find highly selective materials.

Figure 5. Some SHAP dependence plots that are analyzed are given in the main text. The 18 top descriptors’ SDPs can be found in the Supporting
Information. A SHAP dependence plot corresponds to the Shapley values as a function of the feature values for every structures. The feature values
are value names given in Tables S1 and S2. These SHAP plots show the contribution of the features to the prediction given by the ML model. Each
Shapley value depends not only on the value of the feature itself but also on the other features; for this reason, the plots are labeled by a relevant
second feature.
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selectivity. Moreover, they also offer insights into the
deviations necessary to differentiate structures experiencing a
drop in selectivity from those maintaining their selectivity. As
we can see in Figures S1 and S2, the thermodynamic quantities
at high pressure are closer to the 900 K case than to the
ambient-temperature one; these two descriptors inform
naturally on the selectivity at higher pressure. For “G_900
K” (see Figure 5), blue points (corresponding to a “G_0” of
around −8 kJ mol−1) can have either negative or negligible
contributions depending on the value; values below −4 kJ
mol−1 contribute negatively to the prediction with a linear
relation, whereas values between −4 and 5 kJ mol−1 give
constant almost zero contributions. This type of domain
differentiation illustrates how the model can identify structures
with a selectivity drop based on the values of a descriptor. In
the following, we will present further examples highlighting the
determination of selectivity contributions using the remaining
descriptors.

The optimal values for the associated descriptors are
characterized by the U-shape of some SHAP dependence
plots. For instance, we observe an optimal value of around 5.1
for “D_i_vdw_uff298” (Figure 5), while the optimal average
pore size is approximately 5.6. These optimal values align with
the physical requirement of having xenon-sized pores to
enhance xenon attraction, as identified in various literature
papers. However, it should be noted that these values are
slightly higher than those mentioned in the literature due to
differences in atom radius definitions.33 Moreover, values of
“delta_G0_298_900” between 4 and 6 kJ mol−1 (Figure 5)
have a higher likelihood of contributing negatively, indicating
lower ambient-pressure selectivity. These sweet spots provide
valuable insights into distinguishing truly selective materials
from others. Some SHAP dependence plots have a rather linear
domain for the most selective structures (in blue)�a good
linear contribution is observed for the difference of pore
volumes between Xe and Kr sized probes “delta_VF_18_20”
(Figure 5). This implies that a smaller void fraction difference
corresponds to a more selective structure. The same trend is
observed for the standard deviations of the PSD, denoted as
“pore_dist_std”, and the Boltzmann weighted krypton
interaction energy distribution, termed “enthalpy_std_kryp-
ton”. Optimal values for these descriptors tend to be zero. As
the value approaches zero, the contribution becomes more

negative, indicating a more selective structure at ambient
pressure.

Sometimes the optimal values are not around well-identified
values but are contained within larger domains, with threshold
values separating them. For instance, the difference between
the LCD and the average pore size “delta_pore” has a
threshold value around 0.3 Å, below which the contribution for
the most selective structures (blue) is negative (see Figure 5);
even though there is no clear correlations, we can at least find a
threshold value (about 0.23), below which there is higher
probability of having a high ambient-pressure selectivity. There
is the same type of domain splits for the average of the krypton
interaction energies distribution “mean_grid_krypton” (at
around 15), the Boltzmann weighted xenon interaction
energies distribution “enthalpy_std_xenon” (at around 2.5),
the difference of exchange entropic term between the ambient
temperature “delta_TS0_298_900” (at around 3) and high
temperature, and the effective number associated with the PSD
“pore_dist_neff” (at around 2.3). These domains separate
structures that are selective at low pressure, which is key to
telling apart the structures with a selectivity drop at ambient
pressure from the ones without.
3.3.2. Local Interpretability. To apply the previous analysis

in practice, archetypal structures and their selectivity
predictions based on descriptor values will be examined.
Two MOF structures from the test set, with CSD codes
VIWMIZ and BIMDIL, are chosen. Both structures are
selective at low pressure, but the first one decreases in
selectivity, while the second one maintains it at ambient
pressure. The focus will be on understanding how the model
distinguishes between these two completely distinct behaviors.

VIWMIZ belongs to the category of highly selective
structures that undergo a selectivity drop at ambient pressure.
When the free energy values are converted to selectivity values,
VIWMIZ has a selectivity of 62.8 at infinite dilution and 14.5
at ambient pressure. The ML model successfully predicts a
close value of 12.0 for the ambient-pressure selectivity based
on the given descriptor values. Specifically, the descriptor
“G_0” has a highly negative value, which explains its relatively
high negative contribution of −1.81. However, the contribu-
tion of “G_900 K” is relatively low at −0.57 compared to other
materials (Figure 5), as a value of −4.05 is not the most
negative among all structures. Conversely, the remaining

Figure 6. Main Shapley contributions of the ML features to the selectivity prediction of two archetypal examples. The feature labels used are
detailed in Tables S1 and S2. The ML predicted values are shown using f(x), and E[f(x)] is the average predicted values used by SHAP to define
the initial value so that f(x) = E[f(x)] + ∑feature contribution(feature).
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descriptors have positive contributions, which lead to a
selectivity drop. For instance, the difference in pore sizes,
“delta_pore”, has a value of 1.38 Å (above the threshold of
0.23 Å), which contributes +0.25 to the predicted selectivity.
This value aligns with the ranges observed in the associated
dependence plot. We performed similar analyses on the
positive contributions of other descriptors shown in Figure 6
by referring to the dependence plots: “pore_dist_std” is above
the threshold of 0.4, “enthalpy_std_krypton” is above 2.5 kJ
mol−1, “pore_dist_neff” is above 2.3, “delta_TS0_298_900”
falls below 3 kJ mol−1, and “enthalpy_modality” is around 0.75
where positive contributions are more recurrent. However, the
“delta_G0_298_900” value is somewhat close to its optimal
value, resulting in a negative contribution in this specific
prediction. The remaining features make negligible contribu-
tions. Analyzing the contributions of each descriptor to the
prediction given by the model of this work helps in
understanding the underlying features of the VIWMIZ
structure that explain the selectivity drop at higher pressure.
Descriptors such as the shape of the xenon and krypton energy
distributions (“enthalpy_std_krypton” and “enthalpy_modal-
ity”) and the PSD (“pore_dist_std” and “pore_dist_neff”) as
well as the void fraction difference “delta_pore” play key roles
in the lower selectivity at ambient pressure compared to the
ideal infinite dilution case. Intuitively, an effective number of
pores exceeding 2 suggests the presence of different pore sizes,
which aligns with the presence of less attractive pores for
xenon, ultimately leading to decreased selectivity. This
observation is consistent with a high standard deviation of
the PSD or the Boltzmann weighted krypton interaction
energy distribution. Furthermore, a significant difference
between the average pore size and the LCD indicates a
disparity in pore sizes, resulting in larger pores that become
increasingly loaded as the pressure rises. However, interpreting
the entropic term is more complex and presents unexplored
ways of addressing the selectivity drop at higher pressure, as
revealed in the previous study.18

The second structure BIMDIL is also among the most
selective with a selectivity at a low pressure of 41.0, while
maintaining it to 41.2 at ambient pressure. The model predicts
accurately the stability of the selectivity by assigning a value of
40.0. Consequently, the first contribution of “G_0” is one of
the most negative contributions, establishing a baseline of −2.4
for subsequent contributions. However, the contributions of
“G_900 K” and “G_900 K” continue to decrease the predicted
selectivity value. The joint contributions of other descriptors
will discriminate between the two structures and determine
why this particular structure will maintain its selectivity. In
contrast to the previously analyzed structure, this structure has
a “delta_pore” value below 0.3 Å, explaining its negative
Shapley value in the prediction of this study. The contribution
of “delta_G0_298_900”, which had only a slightly negative
impact on the other structure, now plays a significant role as it
falls within the range of 4−6 kJ mol−1 (Figure 6). Additionally,
it is observed that “pore_dist_std” is below the threshold, in
contrast to the previous structure, where it was above the
threshold. Furthermore, the other contributions align with the
rules suggested by the SHAP dependence plots, and no
apparent anomalies are detected. The combined effects of all of
the descriptors result in a lower free energy value, leading to
the conservation of selectivity at higher pressure. The set of
descriptor values for this structure significantly differs from the
previous one, with many values contributing to opposite

domains. This disparity allows the model to differentiate
between highly selective structures and identify those that will
maintain their selectivity at a higher pressure.

These two examples provide a deeper understanding of how
the model distinguishes structures that lose selectivity at higher
pressure from those that do not. Most dependence plots
exhibit a strong association between descriptors and their
effects, with outliers being rare enough to comprehend the
internal logic of the model. As previously discussed, the first
three descriptors establish a baseline for the observed
selectivity decrease with limited information. Subsequently,
the contributions of other descriptors can be positive,
negligible, or negative, depending on the domain in which
the values of the descriptor lie. For instance, the average pore
size and largest cavity diameter need to be within specific
ranges to maximize the likelihood of maintaining selectivity at
higher pressure, aligning with previous studies emphasizing the
importance of pore sizes similar to those of xenon for Xe/Kr
separation. The difference in entropy between ambient
temperature and 900 K is a surprising descriptor that separates
selective structures based on whether its value falls within a
specified range. Similarly, the difference in void fraction
occupied by xenon and krypton is intriguing, as it impacts
selectivity differently depending on whether the structure is
highly selective or not, with the contribution being more or
less proportional to its value. Various methods of measuring
the disparity of the PSD and interaction energy distribution
play a key role in identifying highly selective structures
(indicated in blue on the dependence plot in Figure 5) that
either maintain or decrease in selectivity. These methods
include calculating the difference between the average pore size
and the LCD as well as the standard deviation of the PSD or
Boltzmann weighted energy distribution, which exhibits
distinct behaviors based on the domain in which the value
lies. The SHAP dependence plots provide valuable insights
into the mechanisms underlying the ML model presented in
this article and, more broadly, shed light on the understanding
of Xe/Kr separation origins.

4. CONCLUSIONS AND PERSPECTIVES
To gain a deeper understanding of separation processes within
nanoporous materials, a machine learning prediction of Xe/Kr
ambient-pressure selectivity was performed, aiming for faster
results compared to standard GCMC calculations. The CoRE
MOF 2019 database was utilized for MOF structures, enabling
the evaluation of xenon/krypton selectivity in less than 1 min,
whereas an equivalent GCMC calculation typically requires
approximately 40 min. Unlike the majority of selectivity
predictions in the literature, the decision was made to predict
selectivity on a logarithmic scale that focuses on the order of
magnitude rather than the exact value of selectivity for highly
selective materials. Moreover, converting to an exchange Gibbs
free energy allowed for a more thermodynamic approach based
on the enthalpy, entropy, and free energy values. The challenge
consisted of predicting the free energy equivalent of ambient-
pressure selectivity using low-pressure selectivity alongside key
energy, geometrical, and chemical descriptors. The resulting
fully optimized ML model exhibited high performance,
yielding an RMSE of 0.37 kJ mol−1, which corresponds to an
RMSE of 0.06 on the base-10 log of selectivity. This
represented an improvement compared with the 0.81 kJ
mol−1 RMSE of a baseline model that is solely based on the
low-pressure selectivity calculated by the GrAED algorithm.
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The energy descriptors along with statistical quantities greatly
contributed to the performance of the final model.

One specific objective was to validate the previously
highlighted underlying reasons for the observed selectivity
drop at high pressure in certain highly selective materials at low
pressure. Previous studies found that a high diversity of pore
sizes and channel sizes that favor adsorbate reorganizations
could be at the origin of this phenomenon. Through the
application of interpretability tools, quantitative factors
explaining the conservation or decrease in selectivity for highly
selective materials are identified. Depending on energy
averaging at 900 K, statistical characterizations of energy or
pore size distributions, and differences in occupiable volumes,
a structure could exhibit either a selectivity similar to the
infinite dilution case or a substantially lower selectivity at a
higher pressure. The XGBoost model employed in this study
utilizes a complex ensemble of decision trees to capture the
quantitative rules that can be extracted from the model and
used to establish heuristics supporting intuition about Xe/Kr
selectivity in MOF structures.

The final ML model could be used in a well-designed
workflow to find the best performing materials. For instance,
structures with pores unable to accommodate xenon could be
filtered out, followed by the application of a low-pressure
selectivity calculation to eliminate selectivity values below a
specified threshold. Finally, the structures that would
encounter a drop in selectivity could be removed by using
the model. As a proof of concept, the methodology was tested
on Xe/Kr separation, which represented one of the simplest
adsorption systems (monatomic species and the absence of
electrostatic interactions). A similar approach could be
generalized to other separation applications by calculating
the infinite dilution energies with a more conventional method
(e.g., Widom’s insertion), while adjusting the definitions of
descriptors to suit the adsorbates of interest.

The aim of this study was to introduce new descriptor ideas
that contribute to the development of increasingly efficient
screening methodologies for identifying the optimal materials
for specific applications. However, similar to other studies in
this field, the simulations in this study relied on a set of strong
assumptions, wherein rigid frameworks and nonpolarized
classical force fields were employed. Previous literature
suggested that the most selective materials for Xe/Kr
separation were designed and synthesized based on the effect
of open-metal sites, leveraging the difference in polarizability
between the two molecules to achieve efficient separation.5,6

Moreover, the flexibility of structures could be achieved by
employing flexible force fields with appropriate simulation
methodologies45 or by conducting multiple rigid simulations
using snapshots from NPT simulations.46 The simulations
could be enhanced at the cost of CPU time by coupling them
with a reduction in simulation time, such as that presented in
this article. The pursuit of ever-faster evaluation tools has
enabled the exploration of more complex properties and the
discovery of structures with increasingly relevant character-
istics.
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